
Case-based Reasoning Approach to Adaptive
Modelling in Exploratory Learning

Mihaela Cocea1,2, Sergio Gutierrez-Santos2 and George D. Magoulas2

1 School of Computing, University of Portsmouth,
Buckingham Building, Lion Terrace, Portsmouth, Hampshire, PO1 3HE, UK

mihaela.cocea@port.ac.uk
2 London Knowledge Lab, Birkbeck College, University of London,

23-29 Emerald Street, London, WC1N 3QS, UK
{sergut, gmagoulas}@dcs.bbk.ac.uk

Abstract. Exploratory Learning Environments allow learners to use dif-
ferent strategies for solving the same problem. However, not all possible
strategies are known in advance to the designer or teacher and, even if
they were, considerable time and effort would be required to introduce
them in the knowledge base. We have previously proposed a learner mod-
elling mechanism inspired from Case-based Reasoning to diagnose the
learners when constructing or exploring models. This mechanism mod-
els the learners’ behaviour through simple and composite cases, where
a composite case is a sequence of simple cases and is referred to as a
strategy. This chapter presents research that enhances the modelling ap-
proach with an adaptive mechanism that enriches the knowledge base as
new relevant information is encountered. The adaptive mechanism iden-
tifies and stores two types of cases: (a) inefficient simple cases, i.e. cases
that make the process of generalisation more difficult for the learners,
and (b) new valid composite cases or strategies.

Key words: user modelling, knowledge base adaptation, exploratory learning
environments, case-based reasoning

1 Introduction

Exploratory learning environments (ELEs) are built upon a constructionist ped-
agogical approach [1], which is characterised by two core ideas: (a) learning is
seen as a reconstruction of knowledge rather than as a transmission of knowl-
edge and (b) learning is most effective when it is part of an activity in which
learners feel they are constructing a meaningful product [1]. The construction-
ist approach is inspired by Piaget’s constructivist theory [2] which states that
learners construct mental models to understand the world around them. Con-
sequently, based on these principles, exploratory learning environments allow
learners a high degree of freedom and encourage learners to explore and exper-
iment with different models within the particular learning system. Therefore,
these environments are radically different from Intelligent Tutoring Systems in

2 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

which the learning activities are highly structured and the learner is guided in
a stepwise manner.

Exploratory learning environments provide activities that involve construct-
ing [2] and/or exploring models, varying their parameters and observing the
effects of these variations on the models’ behaviour. When provided with guid-
ance and support ELEs have a positive impact on learning compared with other
more structured environments [3]; however, the lack of support may actually
hinder learning [4]. Therefore, to make ELEs more effective, intelligent support
is needed, despite the difficulties arising from their open nature.

To provide intelligent support, a mechanism for diagnosing the learner is
needed, which in Intelligent Learning Environments is done through user/learner
modelling. The typical approach is based on concepts of the domain: learners are
required to study materials about a concept and then their knowledge level is
assessed through testing. In ELEs the emphasis is on the process of learning by
means of constructionist activities rather than on the knowledge. Therefore, the
focus is on the actions the learners perform in the educational system than on
answers to tests, and, consequently, the learner modelling process should focus
on analysing the learners’ interactions with the system.

To address this, we have proposed a learner modelling mechanism for mon-
itoring learners’ actions when constructing/exploring models by modelling se-
quences of actions that reflect different strategies in solving a task [5]. An impor-
tant problem, however, remains: only a limited number of strategies are known
in advance and can be introduced by the designer/teacher. In addition, even if
all strategies would be known, introducing them in the knowledge base of a sys-
tem would take considerable time and effort. Moreover, the knowledge about a
task evolves over time - students may discover different ways of approaching the
same task, rendering the knowledge base suboptimal for generating proper feed-
back, even if initially it had a good coverage. To address this issue, we employ a
mechanism for adapting the knowledge base in the context of eXpresser [6], an
exploratory learning environment for mathematical generalisation.

The knowledge base adaptation involves a mechanism for acquiring ineffi-
cient simple cases, i.e. cases which include actions that make it difficult for
students to create a generalisable model, and a mechanism for acquiring new
strategies. The former could be potentially useful to enable targeted feedback
about the inefficiency of certain parts of a construction, or certain actions of the
student; this approach could also lead gradually to creating a library of ineffi-
cient constructions produced by students that could be analysed further by a
researcher/teacher. Without the latter a new valid strategy will not be recog-
nised as such, and, consequently, the learner modelling module will diagnose the
learner to be still far from a valid solution and any potential feedback will be
confusing as it will guide the learner towards the most similar strategy stored in
the knowledge base.

The rest of the chapter is structured as follows. The next section briefly in-
troduces eXpresser and the problem of mathematical generalisation. Section 3
describes the case-based reasoning cycle for eXpresser and gives a brief overview

A Case-based Reasoning Approach to Adaptive Modelling 3

of the knowledge representation and the identification mechanism employed.
Section 4 presents our proposed approach for adapting the knowledge base. Sec-
tion 5 describes the validation of this approach and, finally, Section 6 concludes
the chapter and presents some directions for future work.

2 Mathematical Generalisation with eXpresser

Mathematical generalisation has been defined or described in several ways, vary-
ing from philosophical views that could be applied to any type of generalisation
to views very specific to mathematics. Examples from the first category are:
(a) “an object and a means of thinking and communicating” [7](p. 63), and (b)
“applying an argument in a broader context” [8](p. 38). An example from the
second category is: “Generalizing problems, also known as numeric sequences or
geometric growing sequences, present patterns of growth in different contexts.
Students are asked to find the underlying structure and express it as an explicit
function or ‘rule’.” [9](p. 442).

Mathematical generalisation is at the centre of algebraic expressions, as “al-
gebra is, in one sense, the language of generalisation of quantity. It provides
experience of, and a language for, expressing generality, manipulating general-
ity, and reasoning about generality” [10](p. 105). This relation, however, together
with the idea of recognising and analysing patterns and articulating structure,
seems to be elusive to students who fail to understand algebra and its pur-
pose [11]. Students are unable to express a general pattern or relationship in
natural language or in algebraic form [12].

Students, however, are able to identify and predict patterns [10] and there
are claims that it is not the generalisation problems that are causing difficulties
to students, but the way these are presented and the limitations of the teach-
ing approaches used [9]. Typically, “generalising problems are usually presented
as numeric or geometric sequences, and typically ask students to predict the
number of elements in any position in the sequence and to articulate that as
a rule” [9](p. 443). A common strategy is “the construction of a table of val-
ues from which a closed-form formula is extracted and checked with one or two
examples” [13](p. 7), introducing a tendency towards pattern spotting and em-
phasising its numerical aspect [14], [15]. This approach obscures the variables
involved, “which severely limits students ability to conceptualise the functional
relationship between variables, explain and justify the rules that they find, and
use the rules in a meaningful way for problem solving” [9](p. 444).

Another approach that affects students’ understanding of generalisation is the
focus on mathematical products rather than mathematical processes [16], [17].
Malara and Navarra[17] argue that students should be taught to distance them-
selves from the result and the operations needed to obtain that result, and to
reach a higher level of thinking by focusing on the structure of a problem.

Another difficulty encountered in teaching mathematical generalisation is
the students’ difficulty to use letters that stand for the unknown [18] and to
realise that letters represent values [19]. Secondary school students also tend to

4 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

lack a mathematical vocabulary for expressing generality [11] and their written
responses lack precision [16].

Taking this aspects into account, a system called eXpresser [6] was developed
using an iterative process that involved designing with students and teachers.
The main aim was to develop an environment that provides the students with the
means for expressing generality rather than considering special cases or spotting
patterns.

eXpresser enables constructing patterns, creating dependencies between them,
naming properties of patterns and creating algebraic-like rules with either names
or numbers. It is designed for classroom use and targets 11 to 14 years old pupils.
Each task involves two main phases: building a construction and deriving an
algebraic-like rule from it.

Fig. 1 illustrates the system, the properties list of a pattern (linked to another
one) and an example of a rule. The screenshot on the left includes two windows:
(a) the students’ world, where the students build their constructions and (b) the
general world that displays the same construction with a different value for the
variable(s) involved in the task, and where students can check the generality of
their construction by animating their pattern (using the Play button).

We illustrate here a task called ‘stepping stones’ (see Fig. 1) displayed in the
students’ world with a number of 3 red (lighter colour) tiles and in the general
world with a number of 8 red tiles; the task requires to build such a construction
and to find a general rule for the number of blue (darker colour) tiles needed to
surround the red ones. The construction for this task can be built in several ways
that we call strategies. Here we illustrate the ‘C strategy’, named after the shape

Fig. 1. eXpresser screenshots. The screenshot on the left includes a toolbar, the stu-
dents’ world and the general world. The screenshot on the top right shows the property
list of a pattern. The bottom right screenshot illustrates a rule.

A Case-based Reasoning Approach to Adaptive Modelling 5

of the building-block, i.e. the basic unit of a pattern. The components of this
strategy are displayed separately in the students’ world for ease of visualisation:
a red pattern, having 3 tiles, a blue one made of a C-shape pattern repeated 3
times, and 3 blue tiles.

The property list of the C-shape pattern is displayed in the screenshot on
the top right. The first property (A©) specifies the number of iterations of the
building-block; the value for this attribute is set to the value of the iterations of
the red pattern by using a T-box (that includes a name and a value); by using a
T-box, the two (or more) properties are made dependent, i.e. when the value in
the T-box changes in one property, it also changes in the other one(s). The next
properties are move-right (B©), which is set to 2, and move-down (C©), which is
set to 0. The last property (D©) establishes the number needed to colour all the
tiles in the pattern - in our case 5 times the iterations of the red pattern. The
bottom right screenshot displays the rule for the number of blue tiles: 5×red+3,
where red stands for the T-box displayed in A© (a T-box can be displayed with
name only, value only or both).

The construction in Fig. 1 and the rule in the bottom-right corner constitute
one possible solution for the ‘stepping stones’ task. Although in its simplest form
the rule is unique, there are several ways to build the construction and infer a
rule from its components. Thus, there is no unique solution and students follow
various kinds of strategies to construct their models (i.e. construction and rule).
Two examples of such different constructions and rules are illustrated in Fig. 2.
The following section presents our approach for modelling and identification of
strategies.

Fig. 2. (a) ‘HParallel’ Strategy; (b) ‘VParallel’ Strategy.

3 Modelling Learners’ Strategies Using Case-based
Reasoning

In case-based reasoning (CBR) [20] knowledge is stored as cases, typically in-
cluding the description of a problem and its solution. When a new problem is
encountered, similar cases are retrieved and the solution is used or adapted from
one or more of the most similar cases. The CBR cycle typically includes four
processes [20]: (a) Retrieve cases that are similar to the current problem; (b)
Reuse the cases (and adapt) them in order to solve the current problem; (c)
Revise the proposed solution if necessary; (d) Retain the new solution as part
of a new case (see Fig. 3).

6 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

Fig. 3. CBR cycle.

In exploratory learning the same problem has multiple solutions and it is
important to identify which one is used by the learner or whether the learner
has produced a new valid solution. To address this for eXpresser each task has
a case-base (or knowledge base) of solutions (i.e. strategies). When a learner is
building a construction, it is transformed into a sequence of simple cases (i.e.
strategy) and compared with all the strategies in the case-base for the particular
task that the learner is working on; the case-base consists of strategies, i.e.
composite cases, rather than simple cases. To retrieve the strategies that are
most similar to the one used by the learner, appropriate similarity metrics are
employed (see below). Once the most similar strategies are identified, they are
used in a scaffolding mechanism that implements a form of reuse by taking this
information into account along with other information, such as the characteristics
of the learner (e.g. knowledge level, spatial ability), completeness of solution and
state within a task. The reuse, revise and retain steps are part of the knowledge
base adaptation described in Section 4: simple cases are modified and then stored
in a set of inefficient cases; new strategies are stored without modifications.

We use the term knowledge base adaptation in the sense that the knowledge
base changes over time to adapt to new ways in which learners approach tasks -
ways that could be either efficient or inefficient. This is referred to as ‘adaptation
to a changing environment’ [21]. It is not, however, the same as adaptation in
the CBR sense, although this is present to a certain degree in the acquisition
of inefficient cases, as it involves the processes of reuse and revise which are
generally referred to as case adaptation [22]. The acquisition of new strategies
corresponds to case-base maintenance in CBR terminology [20], as it involves
adding a new case for which no similar case has been found.

The following paragraphs briefly present the knowledge representation and
the similarity metrics used for strategy identification.

A Case-based Reasoning Approach to Adaptive Modelling 7

3.1 Knowledge Representation

In our approach, strategies for building a construction are represented as a series
of simple cases with certain relations between them. A simple case is defined as
Ci = {Fi, RAi, RCi}, where Ci represents the case and Fi is a set of attributes.
RAi is a set of relations between attributes and RCi is a set of relations between
Ci and other cases respectively.

The set of attributes of a given case Ci is defined as Fi = {αi1 , αi2 , . . . , αiN },
where N represents the number of attributes. It includes three types of at-
tributes: (a) variables (the first v attributes), (b) numeric (attributes from v+ 1
to w) and (c) binary (attributes from w + 1 to N). The numeric attributes cor-
respond to the values in the property list and the variables correspond to the
type of those properties: number, T-box, expression with number(s) or expres-
sion with T-box(es). The binary attributes refer to the membership of a case
to a strategy and is defined as a PartOfS function which returns 1 if the case
belongs to the strategy and 0 if it does not. There are S binary attributes, where
S is the number of strategies in the knowledge base.

The set of relations between attributes of a given case Ci and attributes of
other cases (as well as attributes of Ci) is represented as RAi = {RAi1 , RAi2 , . . . ,
RAiM }, where M represents the number of relations between attributes and at
least one of the attributes in each relation RAim ,∀m = 1,M , is from Fi, the
set of attributes of Ci. Two types of binary relations are used: (a) dependency
relations such as the one illustrated in Fig. 1 where the number of the iterations
of the blue pattern depends on the iterations of the red pattern through the use
of a T-box; these relations are formally represented as αik = DEP (αjl), where
αikand αjl are variables of cases i and j and means that αik depends on αjl ; (b)
value relations such as the fact that the value of the colouring property of the
blue pattern in Fig. 1 is 5 times the value of the iterations of the red pattern.
A case is considered specific when it does not have dependency relations and
is considered general when it has all the dependency relations required by the
task.

The set of relations between cases is represented as RCi = {RCi1 , RCi2 , . . . ,
RCiP }, where P represents the number of relations between cases and one of
the cases in each relation RCij ,∀j = 1, P is the current case (Ci). Two time-
relations are used: (a) Prev relation indicates the previous case and (b) Next
relation indicates the next case, with respect to the current case. Each case
includes at most one of each of these two relations.

A strategy is defined as Su = {Nu(C), Nu(RA), Nu(RC)}, u = 1, S , where
S represents the number of strategies in the knowledge base, Nu(C) is a set of
cases, Nu(RA) is a set of relation between attributes of cases and Nu(RC) is a
set of relations between cases.

To illustrate how a learner’s construction is transformed into the knowledge
representation detailed above, we use the ‘stepping stones’ task introduced in
Section 2, which requires to find the number of tiles that surround a pattern like
the red one displayed in Fig. 1. There are several strategies for constructing the

8 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

surrounding for that pattern as illustrated in Fig. 1 (the ‘C strategy’) and Fig. 2
(‘HParallel’ and ‘VParallel’ strategies).

Fig. 4. Possible steps for ‘C strategy’.

Besides multiple possible constructions, there are several ways of reaching
the same construction. A possible trajectory for the ‘C strategy’ is illustrated in
Fig. 4. The learner may start with the footpath (the red tiles) and then build a
group of five blue tiles around the leftmost red tile having the form of a ‘C’. Next,
the group is iterated five times (the number of red tiles) and, finally, a vertical
pattern of three tiles is added at the right of the footpath. The details for most
steps of this particular strategy are displayed in Table 1. This table includes a
list a patterns, the relations between attributes and the relations between cases.

The first step includes only one case: the red tiles pattern. After some inter-
mediate steps, not illustrated here, the second step includes 6 cases, i.e. the red
pattern and five single blue tiles, which are in a given order as expressed by the
set of Prev and Next relations. In the third step, the 5 blue tiles are grouped
in one pattern which now becomes C2; consequently, at this point there are 2
successive cases. In the fourth step, the second case, i.e the group of 5 blue tiles,
is repeated 5 times (the number of red tiles), so now there is also a value and a
dependency relation. In the fifth step a new blue tile is added, becoming C3 and

Table 1. Su definition for each step of the ‘C strategy’.

Su Nu (C) Nu (RA) Nu (RC)

Step 1 C1 - -

Step 2 C1, C2, C3, - Prev(Ci+1) = Ci for i = 1, 5
C4, C5, C6 Next(Ci) = Ci+1 for i = 1, 5

Step 3 C1, C2 - Next(C1) = C2

Prev(C2) = C1

Step 4 C1, C2 α23 = α13 Next(C1) = C2

α23 = DEP (α13) Prev(C2) = C1

Step 5 C1, C2, C3 α23 = α13 Next(Ci) = Ci+1 for i = 1, 2
α23 = DEP (α13) Prev(Ci+1) = Ci for i = 1, 2

Step 6 C1, C2, C3 α23 = α13 Next(Ci) = Ci+1 for i = 1, 2
α23 = DEP (α13) Prev(Ci+1) = Ci for i = 1, 2

A Case-based Reasoning Approach to Adaptive Modelling 9

in the sixth step this tile is iterated 3 times; in the last two steps, the relations
between attributes and between cases are the same as in step 4.

The attributes for each pattern were not included in Table 1 as the focus is
on the representation of the strategy and a list of attributes for each pattern
in every step would hinder the understanding of the high level representation.
The difference between Step 5 and Step 6, however, is not clear without knowing
that the difference lies in the attribute values, i.e. for C3, the iterations attribute
has changed from 1 to 3 and the move down attribute has changed from 0 to 1,
which is not shown in Table 1.

3.2 Similarity Metrics

Strategy identification is based on scoring elements of the strategy followed by
the learner according to the similarity of their attributes and their relations to
strategies previously stored. Thus, to identify components of a strategy, four
similarity measures are defined:

(a) Numeric attributes - Euclidean distance: DIR =
√∑N

j=v+1(αIj − αRj
)2 (I

and R stand for input and retrieved cases, respectively); attributes from
v + 1 to N are used, i.e. the numeric and binary attributes described in the
previous section.

(b) Variables: VIR =
∑v

j=1 g(αIj , αRj)/v (attributes from 1 to v are variables),
where g is defined as: g(αIj , αRj

) = 1 if αIj = αRj
and g(αIj , αRj

) = 0 if
αIj 6= αRj

.

(c) Relations between attributes - Jaccard’s coefficient: AIR = |RAI∩RAR|
|RAI∪RAR| . AIR is

the number of relations between attributes that the input and retrieved case
have in common divided by the total number of relations between attributes
of the two cases;

(d) Relations between cases - Jaccard’s coefficient: BIR = |RCI∩RCR|
|RCI∪RCR| , where

BIR is the number of relations between cases that the input and retrieved
case have in common divided by the the total number of relations between
cases of I and R.

To identify the closest strategy to the one followed by a learner during con-
struction, cumulative similarity measures are used for each of the four similarity
types:

(a) Numeric attributes - as this metric has a reversed meaning compared to the
other ones, i.e. a smaller number means a greater similarity, the following
function is used to bring it to the same meaning as the other three similarity
measures, i.e. a greater number means greater similarity:

F1 =

{ z∑z
i=1 DIiRi

if
∑z

i=1DIiRi
6= 0

z if
∑z

i=1DIiRi
= 0,

(b) Variables: F2 = (
∑z

i=1 VIiRi
)/z;

10 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

(c) Relations between attributes: F3 = (
∑z

i=1AIiRi
)/y;

(d) Relations between cases: F4 = (
∑z

i=1BIiRi)/z,

where z represents the minimum number of cases among the two compared
strategies and y represents the number of pairs of cases in the retrieved strategy
that have relations between attributes; for example, the ‘C strategy’ has three
cases and only one relation between an attribute of case C1 and an attribute of
C2 (see Table 1); therefore there is only one pair of cases that have a relation
between attribute, i.e. y = 1.

As the similarity metric for numeric attributes has a different range from the
other metrics, normalisation is applied to have a common measurement scale,
i.e. [0, 1]. This is done using linear scaling to unit range [23] by applying the
following function: x = x−l

u−l , where x is the value to be normalised, l is the lower
bound and u is the upper bound for that particular value. The range of the
values that can be taken by the similarity metric for the numeric attributes, i.e.
F1, is [0, z]. Consequently, to transform the values so that they are within the
[0, 1] range, the following normalisation function is applied: F1 = F1/z.

Weights are applied to the four similarity metrics to express the central aspect
of the construction, the structure. This is mostly reflected by the F1 metric
and, to a lesser extent, by the F3 metric. Therefore, we agreed on the following
weights: w1 = 6, w2 = 1, w3 = 2, w4 = 1. Consequently, the similarity metric for
strategies is: Sim = 6 ∗F1 +F2 + 2 ∗F3 +F4, which can take values in the range
of [0, 10].

The metrics have been tested for several situations of pedagogical impor-
tance: identifying complete strategies, partial strategies, mixed strategies and
non-symmetrical strategies. The similarity metrics were successful in identifying
all these situations (details can be found in [5]).

4 Adaptation of the Knowledge Base

Adaptive systems refer to systems that change over time to respond to new
situations. There are three levels of adaptation depending on the complexity and
difficulty of the adaptation process, with the first level being the least difficult
and the third being the most complex and difficult [21]: (a) adaptation to a
changing environment; (b) adaptation to a similar setting without explicitly
being ported to it; (c) adaptation to a new/unknown application. Our adaptive
modelling mechanism involves adaptivity at the first level, meaning that the
system adapts itself to a drift in the environment by recognising the changes
and reacting accordingly [21].

Before going into the details of our approach, we would like to point out the
structure of the knowledge base. As mentioned in Section 3, for each task, there
is a corresponding knowledge base which consists of strategies. The strategies
are represented as a list of simple cases; each case is represented as a list of
attributes, a list of relations between attributes and a list of relations between
cases. We are not using indexing as for our purpose the similarity matching is

A Case-based Reasoning Approach to Adaptive Modelling 11

not computationally expensive; moreover, because there is a separate knowledge
base for each task, the size of the knowledge bases is relatively small.

Our proposed approach for adapting the knowledge-base of eXpresser in-
cludes acquiring inefficient simple cases and acquiring new strategies. Fig. 5
shows some examples from the ‘stepping stones’ task introduced previously; the
constructions in Fig. 5a and 5c have been broken down into the individual com-
ponents used by the students for ease of visualisation. These examples, with the
adaptation rationale and mechanism are discussed below.

4.1 Acquiring inefficient simple cases

The goal of this mechanism is to identify parts of strategies constructed in inef-
ficient ways and store them in a set or library of ‘inefficient constructions’, i.e.
constructions that pose difficulties for the learners in their process of generali-
sation. The library could be further used for automatic generation of feedback
or could be analysed by a researcher or teacher. The results of such an analysis
could be then used to design better interventions or make other design decisions
for the current system, could be presented as a lesson learned to the scientific
community of mathematics teachers and researchers, or even discussed further
in class (e.g in the case of an inefficient construction that is frequently chosen
by the pupils of that class).

The construction in Fig. 5a illustrates an inefficient pattern within the “HPar-
allel” strategy of the ‘stepping stones’ task: the middle bar of blue tiles is con-
structed as a group of two tiles repeated twice - this can be seen in the property
list of this pattern displayed in Fig. 5b. The efficient way to construct this com-
ponent is one tile repeated four times or, to make it general, one tile repeated
the number of red tiles plus one. The efficient and the inefficient way of con-
structing the middle row of blue tiles lead to the same visual output, i.e. there
is no difference in the appearance of the construction, making the situation even
more confusing. The difficulty lies in relating the values used in the construction
of the middle row of blue tiles (Ci) to the ones used in the middle row of red
tiles (Cj). If the learner would relate the value 2 of iterations of Ci to the value
3 of iterations of Cj , i.e. the value 2 is obtained by using the number of red tiles

Fig. 5. (a) HParallel strategy with one inefficient component (blue middle row) ; (b)
property list of the inefficient component; (c) a new strategy

12 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

(3) minus 1, this would work only for a ‘stepping stones’ task defined for 3 red
tiles. In other words, this will not lead to a general model.

Algorithms 1, 2 and 3 illustrate how inefficient simple cases are identified
and stored. First, the most similar strategy is found. If there is no exact match,
but the similarity is above a certain threshold θ, the process continues with the
identification of the inefficient cases; for each of these cases, several checks are
performed (Alg. 2). Upon satisfactory results and if the cases are not already in
the set of inefficient cases, they are then stored (Alg. 3).

Algorithm 1 Verification(StrategiesCaseBase, InputStrategy)

Find most similar strategy to InputStrategy from StrategiesCaseBase
StoredStrategy ← most similar strategy;
if similarity > θ then

Find cases of InputStrategy that are not an exact match to any case of
StoredStrategy
for each case that is not an exact match do
InputCase← the case that is not an exact match
Compare InputCase to all cases of the set of inefficient cases;
if no exact match then

Find the most similar case to InputCase from the cases of StoredStrategy
StoredCase← the most similar case
if Conditions(StoredCase, InputCase) returns true then // see Alg. 2

InefficientCaseAcquisition(StoredCase, InputCase) // see Alg. 3
end if

end if
end for

end if

Algorithm 2 Conditions(C1, C2)

if (MoveRight[C1] 6= 0 and Iterations[C1] ∗MoveRight[C1] = Iterations[C2] ∗
MoveRight[C2]) or
(MoveDown[C1] 6= 0 and Iterations[C1] ∗ MoveDown[C1] = Iterations[C2] ∗
MoveDown[C2]) then

return true
else

return false
end if

What is stored is actually a modification of the most similar (efficient) case, in
which only the numerical values of iterations, move-right and/or move-down are
updated together with the value and dependency relations. These are the only
modifications because, on one hand, they inform the way in which the pattern has
been built and its non-generalisable relations, and, on the other hand, it is im-

A Case-based Reasoning Approach to Adaptive Modelling 13

Algorithm 3 InefficientCaseAcquisition(StoredCase, InputCase)

NewCase← StoredCase
for i = 4 to v − 1 do // attributes from iterations to move-down

if value of attribute i of NewCase different from that of InputCase then
replace value of attribute i of NewCase with the one of InputCase

end if
end for
for all relations between attributes do // value and dependency relations

replace relations of NewCase with the ones of InputCase
end for
add NewCase to the set of inefficient cases

portant to preserve the values of PartOfS attributes, so the researcher/teacher
knows in which strategies these can occur. The colouring attributes and the re-
lation between cases are not important for this purpose and, therefore, they are
not modified. This has also the advantage of being computationally cheaper.

4.2 New strategy acquisition

The goal of this mechanism is to identify new strategies and store them for future
use. New strategies could be added by the teacher or could be recognised as new
from the learners’ constructions. In the later case, after the verification checks
described below, the decision of storing a new strategy is left with the teacher.
This serves as another validation step for the detected new strategy.

Fig. 5c illustrates the so-called “I strategy”, as some of its building blocks
resemble the letter I. When compared to all stored strategies, this strategy is
rightly most similar to the ‘VParallel’ one (see Fig. 2b), as some parts correspond
to it. However, the similarity is low, suggesting it may be a new strategy. With-
out the adaptation mechanism, the learner modelling module will infer that the
learner is using the ‘VParallel’ strategy, but is still far from having completed
it. This imprecise information could be potentially damaging as it could, for
example, lead to inappropriate system actions, e.g. providing confusing feed-
back that would guide the learner towards the ’VParallel’ strategy. Conversely,
identifying the new construction as a new valid strategy will prevent generating
potentially confusing feedback, and storing the new strategy will enable produc-
ing appropriate feedback in the future - automatically or with input from the
teacher/researcher.

Algorithms 4, 5 and 6 illustrate the process by which an input strategy could
be identified and stored as a new strategy (composite case). If the similarity be-
tween the input strategy and the most similar strategy from the case-base is be-
low a certain threshold θ1 (Alg. 4), some validation checks are performed (Alg. 5)
and upon satisfaction, the new strategy is stored in the case-base (Alg. 6). If the
input strategy has been introduced by a teacher and the similarity is below θ1,
the teacher can still decide to go ahead with storing the new strategy, even if it
is very similar to an existing one in the database.

14 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

Algorithm 4 NewStrategyVerification(StrategiesCaseBase, InputStrategy)

Find most similar strategy to InputStrategy from the StrategiesCaseBase
if similarity < θ1 then

if ValidSolution(InputStrategy) returns true then // see Alg. 5
NewStrategyAcquisition(InputStrategy) // see Alg. 6

end if
end if

Algorithm 5 ValidSolution(InputStrategy)

if SolutionCheck(InputStrategy) returns true then // checks if InputStrategy
‘looks like’ a solution

if the number of cases of InputStrategy < θ2 then
if InputStrategy has relations between attributes then

RelationVerification(InputStrategy) // verifies that the numeric relation cor-
responds to the task rule solution
if successful verification then

return true
end if

end if
end if

end if

Algorithm 6 NewStrategyAcquisition(NewStrategy)

add NewStrategy to the strategies case-base
adjust values of PartOfS

In Algorithm 5 the SolutionCheck(InputStrategy) function verifies whether
InputStrategy ‘looks like’ a solution by examining if the mask of InputStrategy
corresponds to the mask of the task. The following check takes into consideration
the number of simple cases in the InputStrategy. Good solutions are character-
ized by a relatively small number of simple cases; therefore, we propose for the
value of θ2 the maximum number of cases among all stored strategies for the
corresponding task, plus a margin error (such as 3). If this check is satisfied, the
RelationVerification(InputStrategy) function derives a rule from the value rela-
tions of the cases and checks its correspondence to the rule solution of the task.
For example, in the construction of Fig. 5c, the rule derived is 3∗(red

2 +1)+7∗ red2
which corresponds to the solution 5 ∗ red+ 3. If all checks are satisfied, the new
strategy is stored in the case-base and the PartOfS values are adjusted.

5 Validation

The validation of our proposed adaptive modelling mechanisms includes: (a) iden-
tifying the boundaries of how far a pattern can be (inefficiently) modified and
still be recognised as similar to its original (efficient form); (b) correct identifi-
cation of inefficient cases within these boundaries and (c) correct identification

A Case-based Reasoning Approach to Adaptive Modelling 15

Fig. 6. (a) the construction for the ‘pond tiling’ task ; (b) ‘I Strategy’; (c) ‘H strategy’.

of new strategies. This low-level testing of the system shows how the adaptation
of the knowledge-base and the learner modelling module function together to
improve the performance of the system.

To this end, experiments have been conducted using real data produced from
classroom use of eXpresser as well as artificial data that simulated situations
observed in the classroom sessions. Simulated situations were based on varying
parameters of models produced by learners in order to provide more data.

First, a preliminary experiment using classroom data was conducted to iden-
tify possible values for the threshold θ in Algorithm 1 and threshold θ1 in Algo-
rithm 4. Since our main aim was to test the adaptive modelling mechanism we
decided not to seek optimal values for these thresholds, but only to find a good
enough value for each one. Two possibilities were quickly identified - for θ: the
minimum overall similarity (4.50) minus an error margin (0.50) or value 1.00 for
the numerical similarity ; for θ1: the maximum overall similarity (3.20) plus an
error margin (0.30) or value 1 for the numeric similarity.

Experiment 1: identifying the boundaries of how far a pattern can be inefficiently
modified and still be recognised as similar to its original efficient form. As men-
tioned previously, we consider changes in a pattern that can lead to the same
visual output as the original one but use different building-blocks. More specif-
ically, these building-blocks are groups of two or more of the original efficient
building-block. This experiment looks for the limits of changes that a pattern
can undergo without losing its structure so that it can be still considered to be
the same pattern.

For this experiment we used 34 artificial inefficient cases from two tasks: (a)
‘stepping stones’ that was defined earlier and (b) ‘pond tiling’ which requires to
find the number of tiles needed to surround any rectangular pond. Fig. 6 illus-
trates the construction for the ‘pond tiling’ problem and two strategies frequently
used by students to solve this task. Our adaptive mechanism was build to work
for any task in eXpresser rather than for particular tasks. For the two tasks we
used in our experiments, the tests were conducted using their corresponding user
data and their (separate) knowledge bases; the results were collated.

From the 34 cases, 47% were from the ‘stepping stones’ task and 53% were
from the ‘pond tiling’ task. Using these cases, the following boundaries were
identified: (i) groups of less than 4 building-blocks; (ii) groups of 2 building-
blocks repeated less than 6 times and (iii) groups of 3 building-blocks iterated
less than 4 times.

16 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

Experiment 2: correct identification of inefficient cases within the previously
identified boundaries. From the total of 34 inefficient cases used in Experiment 1,
13 were outside the identified boundaries and 21 were within. From the 21 cases
within the boundaries, 62% were from the ‘stepping stones’ task and 38% were
from the ‘pond tiling’ task.

Using the previously identified values for θ, we obtained the following results:
out of these 21 cases, 52.48% had the overall similarity greater than 4.00 and
100% had the numeric similarity above 1.00. These results indicate that a small
modification of a pattern can drastically affect the identification of the strategy
the learner is following; hence almost half the cases have an overall similarity
less than 4.00. The results obtained using the numeric similarity are much better
and consistent with the fact the modifications are just numerical.

Experiment 3: correct identification of strategies. The data for this experiment
included 10 new strategies: 7 observed in trials with pupils and 3 artificial. Out
of the 10 new strategies, 4 were from the ‘pond tiling’ task; all of them were
observed in trials with pupils. The remaining 6 new strategies were from the
‘stepping stones’ task, with 3 of them observed and 3 artificial. The knowledge
base for the two tasks included originally 4 strategies for the ‘stepping stones’
task and 2 strategies for the ‘pond tiling’ task.

Using the previously identified values for θ1, we obtained the following results:
out of the 10 new strategies, 100% had the overall similarity below 3.50 and
70% had the numeric similarity below 1.00. As opposed to Experiment 2, the
overall similarity performs better, being consistent with the fact that the overall
similarity reflects better the resemblance with the stored strategies than the
numeric similarity alone. Given the range that the overall similarity has, i.e.
0 to 10, values below 3.50 indicate a very low similarity and therefore, rightly
suggest that the learner’s construction is considerably different from the ones in
the knowledge base.

6 Conclusions

In this chapter we presented research on modelling users’ behaviour in eX-
presser, an exploratory learning environment for mathematical generalisation.
We adopted a case-based formulation of strategies learners follow when building
constructions in eXpresser and employed similarity metrics to identify which
strategy is used by each learner. Due to the open nature of the environment,
however, not all strategies are known in advance. Moreover, learners use the
system in inefficient ways that lead to difficulties in solving the given tasks. To
overcome these problems, we developed an adaptive modelling mechanism to ex-
pand an initially small knowledge base, by identifying inefficient cases (i.e. cases
that pose additional difficulty to the user’s learning process) and new strategies.

For both inefficient patterns and new strategies, the principle is the same:
they are compared with data from the knowledge base and if they are not already
stored, some task-related checks are performed and upon successful verification,

A Case-based Reasoning Approach to Adaptive Modelling 17

they are added to the knowledge base. With this mechanism, new data can be
added to the knowledge base without affecting the recognition of existing data.

To evaluate our proposed adaptive modelling mechanism three experiments
were conducted: (a) identifying the boundaries of how far a pattern can be
inefficiently modified and still be recognised as similar to its original efficient
form; (b) correct identification of inefficient cases within these boundaries and (c)
correct identification of new strategies. The evaluation of the proposed approach
showed that it is capable of recognising new inefficient patterns within certain
boundaries and of recognising new strategies. The boundaries for recognising
inefficient patterns are related to the similarity metrics’ ability to identify how
much they have been modified from their original initial form. When looking at
the modifications that learners tend to make, we notice that they take the form
of using repetitions of the basic building-block, which modify the structure of
the pattern. The similarity metrics, however, were defined to recognise structural
similarity. Therefore, to improve the metrics’ ability to recognise modifications
of efficient patterns, they should be enhanced with the capacity to recognise
sub-patterns.

Our adaptive modelling mechanism ensures that the learner diagnosis will be
accurate even when the researcher or teacher authors only one or two strategies
for a new task. Also, it ensures that the learner diagnosis will be accurate when
learners’ behaviour changes over time even if initially there is a large knowledge
base.

The adaptive mechanism that we developed was tailored for eXpresser and
the domain of mathematical generalisation. We believe, however, that the high
level idea can be used in other exploratory learning environments and for do-
mains where several approaches are possible for the same problem.

Future work includes using the information on inefficient cases and new
strategies in an automatic way to either incorporate this information in the
feedback and/or inform the teachers and allow them to author feedback.

Acknowledgements

This work is partially funded by the ESRC/EPSRC Teaching and Learning Research
Programme (Technology Enhanced Learning; Award no: RES-139-25-0381).

References

1. Papert, S.: Mindstorms: children, computers and powerful ideas. BasicBooks, New
York (1993).

2. Piaget, J.: The Psychology of Intelligence. New York: Routledge (1950).
3. de Jong, T., van Joolingen, W.: Scientific discovery learning with computer simu-

lations of conceptual domains. Review of Educational Research 68 (1998) 179–202.
4. Kirschner, P., Sweller, J., Clark, R.: Why minimal guidance during instruction

does not work: An analysis of the failure of constructivist, discovery, problem-
based, experiential and inquiry-based teaching. Educational Psychologist 41(2)
(2006) 75–86.

18 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

5. Cocea, M., Magoulas, G.D.: Task-oriented modeling of learner behaviour in ex-
ploratory learning for mathematical generalisation. In: In Proceedings of the 2nd
ISEE workshop, in conjunction with AIED’09. (2009) 16–24.

6. Pearce, D., Mavrikis, M., Geraniou, E., Gutiérrez, S.: Issues in the design of an
environment to support the learning of mathematical generalisation. In Dillen-
bourg, P., Specht, M., eds.: EC-TEL. Volume 5192 of Lecture Notes in Computer
Science., Springer (2008) 326–337.

7. Dorfler, W.: Forms and means of generalisation in mathematics. In Bishop, A.,
Mellin-Olsen, S., van Dormolen, J., eds.: Mathematical Knowledge: Its Growth
through Teaching, Kluwer Academic Publishers, Dordrecht (1991) 63–85.

8. Harel, G., Tall, D.: The general, the abstract and the generic in advanced mathe-
matics. For the Learning of Mathematics 11(1) (1991) 38–42.

9. Moss, J., Beatty, R.: Knowledge building in mathematics: Supporting collabora-
tive learning in pattern problems. International Journal of Computer-Supported
Collaborative Learning 1(4) (2006) 441–465.

10. Mason, J. L. Haggarty, Aspects of Teaching Secondary Mathematics: Perspectives
on Practice. In: Generalisation and algebra: Exploiting children’s powers. Rout-
ledge Falmer and the Open University (2002) 105–120.

11. Geraniou, E., Mavrikis, M., Hoyles, C., Noss, R.: A constructionist approach to
mathematical generalisation. In Joubert, M., ed.: Proceedings of the British Society
for Research into Learning Mathematics. Volume 28 (2) of BSRLM Proceedings.
(2008).

12. Hoyles, C., Küchemann, D.: Students understanding of logical implication. Edu-
cational Studies in Mathematics 51(3) (2002) 193–223.

13. Bednarz, N., Kieran, C., Lee, L.: Approaches to algebra: Perspectives for research
and teaching. In Bednarz, N., Kieran, C., Lee, L., eds.: Approaches to algebra:
Perspectives for research and teaching, Kluwer Academic Publishers, Dordrecht
(1991) 3–12.

14. Noss, R., Healy, L., Hoyles, C.: The construction of mathematical meanings: Con-
necting the visual with the symbolic. Educational Studies in Mathematics 33(2)
(1997) 203–233.

15. Noss, R., Hoyles, C.: Windows on Mathematical Meanings: Learning cultures and
computers. Kluwer Academic Publishers, Dordrecht (1996).

16. Warren, E., Cooper, T.J.: Generalising the pattern rule for visual growth patterns:
actions that support 8 year olds’ thinking. Educational Studies in Mathematics
67(2) (2008) 171–185.

17. Malara, N., Navarra, G.: ArAl Project: Arithmetic pathways towards favouring
pre-algebraic thinking. Pitagora Editrice, Bologna (2003).

18. Küchemann, D.: Childrens Understanding of Mathematics :11 - 16. John Murray,
London (1991).

19. Duke, R., Graham, A.: Inside the letter. Mathematics Teaching Incorporating
Micromath 200 (2007) 42–45.

20. Kolodner, J.L.: Case-Based Reasoning. 2nd edn. Morgan Kaufmann Publishers,
Inc. (1993).

21. Anguita, D.: Smart adaptive systems: State of the art and future directions of
research. In: Proceedings of the 1st European Symposium on Intelligent Technolo-
gies, Hybrid Systems and Smart Adaptive Systems, EUNITE 2001. (2001) 1–4.

22. Mitra, R., Basak, J.: Methods of case adaptation: A survey: Research articles.
International Journal of Intelligent Systems 20 (June 2005) 627–645.

23. Aksoy, S., Haralick, R.: Feature normalisation and likelihood-based similarity mea-
sures for image retrieval. Pattern Recognition Letters 22(5) (2001) 563–582.

