
Adaptive Modelling of Users’ Strategies in
Exploratory Learning using

Case-based Reasoning

Mihaela Cocea, Sergio Gutierrez-Santos and George D. Magoulas

London Knowledge Lab, Birkbeck College, University of London,
23-29 Emerald Street, London, WC1N 3QS, UK
{mihaela, sergut, gmagoulas}@dcs.bbk.ac.uk

Abstract. In exploratory learning environments, learners can use dif-
ferent strategies to solve a problem. To the designer or teacher, however,
not all these strategies are known in advance and, even if they were, intro-
ducing them in the knowledge base would involve considerable time and
effort. In previous work, we have proposed a case-based knowledge repre-
sentation, modelling the learners behaviour when constructing/exploring
models through simple cases and sequences of cases, called strategies. In
this paper, we enhance this approach with adaptive mechanisms for ex-
panding the knowledge base. These mechanisms allow to identify and
store inefficient cases, i.e. cases that pose additional difficulty to stu-
dents in their learning process, and to gradually enrich the knowledge
base by detecting and adding new strategies.

Key words: user modelling, knowledge base adaptation, exploratory learning
environments, case-based reasoning

1 Introduction

Exploratory learning environments (ELEs) provide activities that involve con-
structing [1] and/or exploring models, varying their parameters and observing
the effects of these variations on the models. When provided with guidance and
support ELEs have a positive impact on learning compared with other more
structured environments [2]; however, the lack of support may actually hin-
der learning [3]. Therefore, to make ELEs more effective, intelligent support is
needed, despite the difficulties arising from their open nature.

To address this, we proposed a learner modelling mechanism for monitoring
learners’ actions when constructing/exploring models by modelling sequences of
actions reflecting different strategies in solving a task [4]. An important problem,
however, remains: only a limited number of strategies are known in advance and
can be introduced by the designer/teacher. In addition, even if all strategies were
known, introducing them in the knowledge base would take considerable time and
effort. Moreover, the knowledge about a task evolves over time - students may
discover different ways of approaching the task, rendering the knowledge base
suboptimal for generating proper feedback, despite the initially good coverage.
To address this, we employ a mechanism for adapting the knowledge base in the
context of eXpresser [5], an ELE for mathematical generalisation.

The knowledge base adaptation involves a mechanism for acquiring inefficient
cases, i.e. cases which include actions that make it difficult for students to create a

2 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

generalisable model, and a mechanism for acquiring new strategies. The former
could be potentially useful to enable targeted feedback about the inefficiency
of certain parts of a construction, or certain actions of the student; this ap-
proach could also lead gradually to creating a library of inefficient constructions
produced by students that could be analysed further by a researcher/teacher.
Without the later a new valid strategy will not be recognised as such, and, con-
sequently, the learner modelling module will diagnose the learner to be still far
from a valid solution and any potential feedback will be confusing as it will guide
the learner towards the most similar strategy stored in the knowledge base.

The next section briefly introduces eXpresser and mathematical generalisa-
tion. Section 3 describes the case-based reasoning (CBR) cycle for eXpresser
and gives a brief overview of the knowledge representation and the identification
mechanism employed. Section 4 presents our proposed approach for adapting the
knowledge base. Section 5 describes the validation of this approach and, finally,
Section 6 concludes the paper and presents some directions for future work.

2 Mathematical Generalisation with eXpresser
eXpresser [5] is an ELE for the domain of mathematical generalisation. It is
designed for classroom use and targets pupils of 11 to 14 year-olds. Each task
involves constructing a model and deriving an algebraic-like rule from it. Fig. 1
illustrates the system, the properties list of a pattern (linked to another one) and
an example of a rule. The left screenshot includes two windows: (a) the students’
world, where students build their constructions and (b) the general world that
displays the same construction with a different value for the variable(s) involved
in the task, and where students can check the generality of their construction
by animating their pattern (using the Play button).

We illustrate here a task called ‘stepping stones’ (see Fig. 1) displayed in the
students’ world with a number of 3 red (lighter colour) tiles and in the general
world with a number of 8 red tiles; the task requires to build such a model and
to find a general rule for the number of blue (darker colour) tiles needed to
surround the red ones. The model for this task can be built in several ways that
we call strategies. Here we illustrate the ‘C strategy’, named after the shape of
the building-block, i.e. the basic unit of a pattern. Its components are displayed
separately in the students’ world for ease of visualisation: a red pattern, having
3 tiles, a blue one made of a C-shape pattern repeated 3 times, and 3 blue tiles.

The property list of the C-shape pattern is displayed in the top right screen-
shot. The first property (A©) specifies the number of iterations of the building-
block; the value for this attribute is set to the value of the iterations of the red
pattern by using a T-box (that includes a name and a value); by using a T-box,
the two (or more) properties are made dependent, i.e. when the value in the
T-box changes in one property, it also changes in the other one(s). The next
properties are move-right (B©), set to 2, and move-down (C©), set to 0. The last
property (D©) establishes the number for colouring all the tiles in the pattern - in
our case 5 times the iterations of the red pattern. The bottom right screenshot
displays the rule for the number of blue tiles: 5 x red + 3, where red stands for
the T-box in A© (a T-box can be displayed with name only, value only or both).

Adaptive Modelling of Users’ Strategies in Exploratory Learning 3

Fig. 1. eXpresser screenshots.

Fig. 2. (a) ‘HParallel’ Strategy; (b) ‘VParallel’ Strategy.

The construction and the bottom-right rule in Fig. 1 constitute one possible
solution for the ‘stepping stones’ task. Although in its simplest form the rule is
unique, there are several ways to build the construction and infer a rule from
its components. Thus, there is no unique solution and students follow various
strategies to construct their models. Two such examples are illustrated in Fig. 2.

3 Modelling Learners’ Strategies Using CBR
In case-based reasoning (CBR) [8] knowledge is stored as cases, typically includ-
ing a problem and its solution. When a new problem is encountered, similar
cases are retrieved and the solution is used/adapted from them. Four processes
are involved [8]: (a) Retrieve similar cases to the current problem; (b)Reuse the
cases (and adapt them) to solve the current problem; (c) Revise the proposed
solution if necessary; (d) Retain the new solution as part of a new case.

In exploratory learning a problem has multiple solutions and it is important
to identify the one the learner used or if the learner produced a new valid solu-
tion. To this end, eXpresser has a case-base (knowledge base) of solutions (i.e.
strategies) for each task. When a learner builds a construction, it is transformed
into a sequence of simple cases (i.e. strategy) and compared to all strategies in
the case-base for the task the learner is working on; the case-base consists of
strategies, i.e. composite cases, rather than simple cases. To retrieve the most
similar strategies to the one used by the learner, appropriate similarity metrics
are employed (see below). Once the most similar strategies are identified, they are
used in a scaffolding mechanism that implements a form of reuse by taking this
information into account along with other information, such as learner charac-
teristics (e.g. knowledge level, spatial ability), completeness of solution and state
within a task. The reuse, revise and retain steps are part of the knowledge base
adaptation described in Section 4: simple cases are modified and then stored in
a set of inefficient cases; new strategies are stored without modifications.

4 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

We use the term knowledge base adaptation in the sense that the knowledge
base changes over time to adapt to new ways in which learners approach tasks -
ways that could be either efficient or inefficient. This is referred to as ‘adaptation
to a changing environment’ [9]. It is not, however, the same as adaptation in the
CBR sense (case adaptation), which involves the reuse and revise processes [10].
These processes, though, are included in the acquisition of inefficient cases, and
thus, case adaptation is partly present in our mechanism. The acquisition of new
strategies corresponds to case-base maintenance in CBR terminology [8], as it
involves adding a new case for which no similar case was found.

Knowledge Representation. Strategies for building constructions are represented
as series of cases with relations between them. A case is defined as Ci = {Fi, RAi,
RCi}, where Ci is the case and Fi is a set of attributes. RAi is a set of relations
between attributes and RCi is a set of relations between Ci and other cases.

The set of attributes of Ci is defined as Fi = {αi1 , αi2 , . . . , αiN }. It includes
three types: numeric, variables and binary. Numeric attributes correspond to
the values in the property list and variables correspond to the type of those
properties: number, T-box, expression with number(s) or expression with T-
box(es). Binary attributes refer to the membership of a case to a strategy, defined
as a PartOfS function returning 1 if it belongs to the strategy and 0 otherwise;
there are S binary attributes (S=number of strategies in the knowledge base).

The set of relations between attributes of a case Ci and attributes of other
cases (including Ci) is represented as RAi = {RAi1 , RAi2 , . . . , RAiM }, where at
least one of the attributes in each relation RAim ,∀m = 1,M , is from Fi, the
set of attributes of Ci. Two types are used: (a) dependency relations such as the
one illustrated in Fig. 1 where the number of the iterations of the blue pattern
depends on the iterations of the red pattern through the use of a T-box; (b) value
relations such as ‘the value of the colouring property of the blue pattern in Fig. 1
is 5 times the iterations of the red pattern’. The set of relations between cases
is represented as RCi = {RCi1 , RCi2 , . . . , RCiP }, where one of the cases in each
relation RCij ,∀j = 1, P is Ci. Two time-relations are used: (a) Prev relation
indicates the previous case and (b) Next relation indicates the next case, with
respect to the current case.

A strategy is defined as Su = {Nu(C), Nu(RA), Nu(RC)}, u = 1, r , where
Nu(C) is a set of cases, Nu(RA) is a set of relation between attributes of cases
and Nu(RC) is a set of relations between cases. The structure of a strategy is
displayed in Fig. 3.

Fig. 3. Schematic structure of strategies.

Similarity Metrics. Strategy identification is based on scoring elements of the
strategy followed by the learner according to the similarity of their attributes
and their relations to strategies previously stored. The similarity metrics used

Adaptive Modelling of Users’ Strategies in Exploratory Learning 5

for cases and strategies are displayed in Fig. 4. The overall similarity metric for
strategies is: Sim = w1 ∗ F1 + w2 ∗ F2 + w3 ∗ F3 + w4 ∗ F4, where F1 is the
normalised value of F1. To bring F1 in the same range as the other metrics, i.e.
[0, 1], we applied linear scaling to unit range [11] using the function F1 = F1/z.

Fig. 4. Similarity metrics for cases and strategies.

Weights are applied to the four similarity metrics to express the central
aspect of the construction, the structure. This is mostly reflected by the F1

metric and, to a lesser extent, by the F3 metric. Therefore, we agreed on the
following weights: w1 = 6, w2 = 1, w3 = 2, w4 = 1. This leads to the range of
[0, 10] for the values of Sim. The metrics have been tested for several situations
of pedagogical importance: identifying complete strategies, partial strategies,
mixed strategies and non-symmetrical strategies. The similarity metrics were
successful in identifying all these situations (details can be found in [4]).

4 Adaptation of the Knowledge Base
Our approach for adapting the knowledge-base of eXpresser includes acquiring
inefficient simple cases, acquiring new strategies and deleting redundant ones.
In this paper we focus on the first two, for which some examples from the ‘step-
ping stones’ task are displayed in Fig. 5; the constructions are broken down
into individual components used by the students for ease of visualisation. These
examples, with the adaptation rationale and mechanism are discussed below.

Fig. 5. (a)-(b) HParallel strategy with an inefficient component (blue middle row) and
its property list; (c)-(d) VParallel strategy with an inefficient component (blue vertical
bars) and its property list; (e) a new strategy

6 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

Acquiring inefficient simple cases. The goal of this mechanism is to identify
parts of strategies constructed in inefficient ways and store them in a set of
‘inefficient constructions’, i.e. constructions that pose difficulties for learners in
their process of generalisation. The set could be used for automatic generation
of feedback or analysed by a researcher/teacher. The results could inform the
design of better interventions, could be presented as a lesson learned to the
scientific community of mathematics teachers/researchers, or even discussed in
class (e.g. if an inefficient construction is often chosen by pupils of that class).

The construction in Fig. 5a illustrates an inefficient case within the “HPar-
allel” strategy of the ‘stepping stones’ task: the middle bar of blue tiles is con-
structed as a group of two tiles repeated twice - see its property list in Fig. 5b.
The efficient way to construct this component is one tile repeated 4 times or,
to make it general, one tile repeated the number of red tiles plus 1. Both ap-
proaches, i.e. the efficient and the inefficient, lead to the same visual output, i.e.
there is no difference in the way the construction looks like, making the situation
even more confusing. The difficulty lies in relating the values of the blue middle
row (Ci) to the ones of the red middle row (Cj). If the learner relates value 2 of
iterations of Ci to value 3 of iterations of Cj , i.e. value 2 is obtained by using the
iterations of red tiles (3) minus 1, this would work only for a ‘stepping stones’
task defined for 3 red tiles. In other words, this will not lead to a general model.
Another example of an inefficient case is given in Fig. 5c, with its property list
presented in Fig. 5d. These inefficient cases are not related to mathematical mis-
conceptions, but seem to be a consequence of the system’s affordances combined
with little experience of generalisation tasks, and come from learners’ wish to
make there patterns bigger without considering the generality of their approach.
However, they are pedagogically important, offering learners the possibility to
reflect on their actions in relation to generalisation.

Algorithm 1 Verification(StrategiesCaseBase, InputStrategy)

Find most similar strategy to InputStrategy from StrategiesCaseBase
StoredStrategy ← most similar strategy;
if similarity > θ then

Find cases of InputStrategy that are not an exact match to any case of StoredStrategy
for each case that is not an exact match do
InputCase← the case that is not an exact match
Compare InputCase to all cases of the set of inefficient cases;
if no exact match then

Find the most similar case to InputCase from the cases of StoredStrategy
StoredCase← the most similar case
if Conditions(StoredCase, InputCase) returns true then // see Alg. 2

InefficientCaseAcquisition(StoredCase, InputCase) // see Alg. 3
end if

end if
end for

end if

Algorithms 1, 2 and 3 illustrate how inefficient simple cases are identified
and stored. First, the most similar strategy is found. If there is no exact match,
but the similarity is above a certain threshold θ, the process continues with the
identification of the inefficient cases; for each of these cases, several checks are
performed (Alg. 2). Upon satisfactory results and if the cases are not already in
the set of inefficient cases, they are then stored (Alg. 3). What is stored is actually
a modification of the most similar (efficient) case, in which only the numerical

Adaptive Modelling of Users’ Strategies in Exploratory Learning 7

values of iterations, move-right and/or move-down are updated together with
the value and dependency relations. These are the only modifications because,
on one hand, they inform the way in which the pattern was built, including its
non-generalisable relations, and, on the other hand, it is important to preserve
the values of PartOfS attributes, so the researcher/teacher knows in which
strategies these can occur. The colouring attributes and the relation between
cases are not important for this purpose and, therefore, they are not modified.
This has also the advantage of being computationally cheaper.
Algorithm 2 Conditions(C1, C2)

if (MoveRight[C1] 6= 0 and Iterations[C1]∗MoveRight[C1] = Iterations[C2]∗MoveRight[C2])
or
(MoveDown[C1] 6= 0 and Iterations[C1] ∗MoveDown[C1] = Iterations[C2] ∗MoveDown[C2])
then

return true
else

return false
end if

Algorithm 3 InefficientCaseAcquisition(StoredCase, InputCase)

NewCase← StoredCase
for i = 4 to v − 1 do // attributes from iterations to move-down

if value of attribute i of NewCase different from that of InputCase then
replace value of attribute i of NewCase with the one of InputCase

end if
end for
for all relations between attributes do // value an dependency relations

replace relations of NewCase with the ones of InputCase
end for
add NewCase to the set of inefficient cases

New strategy acquisition. The goal is to identify new strategies and store them for
future use. New strategies could be added by the teacher or could be recognized
from the learners’ constructions. In the later case, after the verification checks
described below, the decision of storing a new strategy is left with the teacher.
This serves as another validation step for the detected new strategy.

Fig. 5e illustrates the so-called “I strategy”, due to its resemblance to letter
I. When compared to all strategies, it is rightly most similar to the ‘VParallel’
one (see Fig. 2b), as some parts correspond to it. However, the similarity is low,
suggesting it may be a new strategy. Without the adaptation mechanism, the
learner modelling module will infer the learner is using the ‘VParallel’ strategy,
but is still far from completion. This imprecise information is potentially dam-
aging as it could, for example, lead to inappropriate system actions, e.g. provid-
ing confusing feedback by guiding the learner towards the ’VParallel’ strategy.
Conversely, the adaptation mechanism will prevent generating such confusing
feedback, and storing the new strategy will enable appropriate feedback in the
future - automatically or with input from the teacher/researcher.

Algorithms 4, 5 and 6 illustrate how an input strategy is identified and stored
as a new strategy (composite case). If the similarity between the input strategy
and the most similar strategy from the case-base is below a certain threshold θ1

(Alg. 4), some validation checks are performed (Alg. 5) and upon satisfaction,
the new strategy is stored in the case-base (Alg. 6). If the input strategy has
been introduced by a teacher and the similarity is below θ1, the teacher can still
store the new strategy, even if very similar to an existing one.

8 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

Algorithm 4 NewStrategyVerification(StrategiesCaseBase, InputStrategy)

Find most similar strategy to InputStrategy from the StrategiesCaseBase
if similarity < θ1 then

if ValidSolution(InputStrategy) returns true then // see Alg. 5
NewStrategyAcquisition(InputStrategy) // see Alg. 6

end if
end if

Algorithm 5 ValidSolution(InputStrategy)

if SolutionCheck(InputStrategy) returns true then // checks if InputStrategy ‘looks like’ a
solution

if the number of cases of InputStrategy < θ2 then
if InputStrategy has relations between attributes then

RelationVerification(InputStrategy) // verifies that the numeric relation corresponds to
the task rule solution
if successful verification then

return true
end if

end if
end if

end if

Algorithm 6 NewStrategyAcquisition(NewStrategy)

add NewStrategy to the strategies case-base
adjust values of PartOfS

In Algorithm 5 the SolutionCheck(InputStrategy) function verifies whether
InputStrategy ‘looks like’ a solution by examining if the mask of InputStrategy
corresponds to the mask of the task. The following check takes into consideration
the number of simple cases in the InputStrategy. Good solutions are character-
ized by a relatively small number of simple cases; therefore, we propose for the
value of θ2 the maximum number of cases among all stored strategies for the
corresponding task, plus a margin error (such as 3). If this check is satisfied, the
RelationVerification(InputStrategy) function derives a rule from the value rela-
tions of the cases and checks its correspondence to the rule solution of the task.
For example, in the construction of Fig. 5c, the rule derived is 3∗(red2 +1)+7∗ red2
which corresponds to the solution 5 ∗ red+ 3. If all checks are satisfied, the new
strategy is stored in the case-base and the PartOfS values are adjusted.

5 Validation

The validation of our proposed mechanisms includes: (a) identifying the bound-
aries of how far a pattern can be modified and still be recognised as similar to
its original; (b) correct identification of inefficient cases within these boundaries
and (c) correct identification of new strategies. This low-level testing of the sys-
tem shows how the adaptation of the knowledge-base and the learner modelling
module function together to improve the performance of the system.

To this end, experiments have been conducted using real data produced from
classroom use of eXpresser as well as artificial data that simulated situations
observed in the classroom sessions. Simulated situations were based on varying
parameters of models produced by learners in order to provide more data.

First, a preliminary experiment using classroom data was conducted to iden-
tify possible values for the threshold θ in Algorithm 1 and threshold θ1 in Algo-
rithm 4. Since our main aim was to test the adaptive modelling mechanism we
decided not to seek optimal values for these thresholds, but only to find a good

Adaptive Modelling of Users’ Strategies in Exploratory Learning 9

enough value for each one. Two possibilities were quickly identified - for θ: the
minimum overall similarity (4.50) minus an error margin (0.50) or value 1.00 for
the numerical similarity ; for θ1: the maximum overall similarity (3.20) plus an
error margin (0.30) or value 1 for the numeric similarity.

Experiment 1: identifying the boundaries of how far a pattern can be inefficiently
modified and still be recognised as similar to its original efficient form. As men-
tioned previously, we consider changes in a pattern that can lead to the same
visual output as the original one but use different building-blocks. More specif-
ically, these building-blocks are groups of two or more of the original efficient
building-block. This experiment looks for the limits of changes that a pattern
can undergo without losing its structure. We used 34 artificial inefficient cases
from two tasks: (a) ‘stepping stones’ that was defined earlier and (b) ‘pond tiling’
which requires to find the number of tiles needed to surround any rectangular
pond. Fig. 6 illustrates the construction for the ‘pond tiling’ problem and two
strategies frequently used by students to solve this task. Compared to ‘stepping
stones’, pond tiling is more difficult, requiring the use of two variables (the width
and height of the pond) rather than one.

From the 34 cases, 47% were from the ‘stepping stones’ task and 53% were
from the ‘pond tiling’ task. Using these cases, the following boundaries were
identified: (i) groups of less than 4 building-blocks; (ii) groups of 2 building-
blocks repeated less than 6 times and (iii) groups of 3 building-blocks iterated
less than 4 times.

Fig. 6. (a) the construction for the ‘pond tiling’ task ; (b) ‘I Strategy’; (c) ‘H strategy’.

Experiment 2: correct identification of inefficient cases within the previously
identified boundaries. From the 34 inefficient cases of Experiment 1, 13 were
outside the identified boundaries and 21 were within. From the 21 cases within
the boundaries, 62% were from the ‘stepping stones’ task and 38% were from the
‘pond tiling’ task. Using the previously identified values for θ, we obtained the
following results: out of these 21 cases, 52.48% had the overall similarity greater
than 4.00 and 100% had the numeric similarity above 1.00. These results indicate
that a small modification of a pattern can drastically affect the identification of
the strategy the learner is following; hence almost half the cases have an overall
similarity less than 4.00. The results obtained using the numeric similarity are
much better and consistent with the fact the modifications are just numerical.

Experiment 3: correct identification of strategies. The data for this experiment
included 10 new strategies: 7 observed in trials with pupils and 3 artificial. Out
of the 10 new strategies, 4 were from the ‘pond tiling’ task; all of them were
observed in trials with pupils. The remaining 6 new strategies were from the
‘stepping stones’ task, with 3 of them observed and 3 artificial. The knowledge
base for the two tasks included originally 4 strategies for the ‘stepping stones’
task and 2 strategies for the ‘pond tiling’ task. Using the previously identified
values for θ1, we obtained the following results: out of the 10 new strategies, 100%

10 M. Cocea, S. Gutierrez-Santos and G.D. Magoulas

had the overall similarity below 3.50 and 70% had the numeric similarity below
1.00. As opposed to Experiment 2, the overall similarity performs better, being
consistent with the fact that the overall similarity reflects better the resemblance
with the stored strategies than the numeric similarity alone. Given the range
that the overall similarity has, i.e. from 0 to 10, values below 3.50 indicate a
very low similarity and therefore, rightly suggest that the learner’s construction
is considerably different from the ones in the knowledge base.

6 Conclusions
In this paper we presented research on modelling users’ behaviour in eXpresser,
an exploratory learning environment for mathematical generalisation. We adopted
a case-based formulation of strategies learners follow when building constructions
in eXpresser and employed similarity metrics to identify which strategy is used
by each learner. Due to the open nature of the environment, however, not all
strategies are known in advance. Moreover, learners use the system in ineffi-
cient ways that lead to difficulties in solving the given tasks. To overcome these
problems, we developed an adaptive modelling mechanism to expand an initially
small knowledge base, by identifying inefficient cases (i.e. cases that pose addi-
tional difficulty to the user’s learning process) and new strategies. Future work
includes using the information on inefficient cases and new strategies in an au-
tomatic way to either incorporate it in the feedback and/or inform the teachers
and allow them to author feedback.

References
1. Piaget, J.: The Psychology of Intelligence. New York: Routledge (1950).
2. de Jong, T., van Joolingen, W.R.: Scientific discovery learning with computer simu-

lations of conceptual domains. Review of Educational Research, 68, 179-202, (1998).
3. Kirschner, P., Sweller, J., Clark, R.E.: Why Minimal Guidance During Instruction

Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-
based, Experiential and Inquiry-based Teaching. Ed. Psych., 41(2), 75–86 (2006).

4. Cocea, M., Magoulas, G.: Task-oriented Modeling of Learner Behaviour in Ex-
ploratory Learning for Mathematical Generalisation. In Proceedings of the 2nd ISEE
workshop, AIED’09, 16–24 (2009).

5. Pearce, D., Mavrikis, M., Geraniou, E., Gutierrez, S.: Issues in the Design of an En-
vironment to Support the Learning of Mathematical Generalisation. In Proceedings
of EC-TEL08, 326–337 (2008).

6. Mason, J.: Generalisation and Algebra: Exploiting Children’s Powers. In L.Haggarty
(ed.), Aspects of Teaching Secondary Mathematics: Perspectives on Practice, 105–
120 (2002).

7. Kaput, J.: Technology and Mathematics education. In D. Grouws (ed.) Handbook of
Research on Mathematics Teaching and Learning, NY: Macmillan, 515–556 (1992).

8. Kolodner, J.L.: Case-Based Reasoning, Morgan Kaufmann Publishers, Inc.(1993).
9. Anguita D.: Smart adaptive systems: State of the art and future directions of re-

search. In Proceedings of EUNITE 2001, 1–4 (2001).
10. Mitra, R., Basak, J.: Methods of case adaptation: A survey. International Journal

of Intelligent Systems, 20(6), 627–645 (2005).
11. Aksoy, S., Haralick, R.M.: Feature Normalisation and Likelihood-based Similarity

Measures for Image Retrieval. Pattern Recognition Letters 22, 563–582 (2001).

