
Identifying User Strategies in Exploratory Learning
with Evolving Task Modelling

Mihaela Cocea and George D. Magoulas
London Knowledge Lab, Birkbeck College, University of London

Email: {mihaela, gmagoulas}@dcs.bbk.ac.uk

Abstract—In this paper we present work on adaptive iden-
tification of learners’ strategies, gradually developing a higher
level of adaptation based on evolving models of mathematical
generalisation tasks in an Exploratory Learning Environment.
A similarity-based classification approach is defined for the
identification of strategies, using an initially small number of
classes (i.e. strategies). A strategy is composed of several patterns
with relations between them. An evolution monitor component
observes changes in the environment and triggers a mechanism
that builds-up the task model. The task model evolves when new
relevant information becomes available by adding a new strategy
(class) or a new inefficient pattern, i.e. patterns that make it
difficult for the learner to generalise.

I. INTRODUCTION

Adaptive on-line systems are characterised by their ability
to modify themselves to account for new data at the time of en-
counter with it [1]. This property would be highly desirable for
adaptive educational systems that aim to deliver personalised
support by diagnosing the learner based on the knowledge
stored in a predefined model. Adaptivity in the context of
educational systems refers to modifications in content, pre-
sentation or feedback depending on learners’ characteristics.
These characteristics could be knowledge/skills, preferences,
goals, etc. Here we focus on adaptation of learning to the
knowledge/skills level of the user. For this situation, the prede-
fined model describes the educational domain and sometimes
the tasks as well [2], [3]. Some topics allow a comprehensive
definition of a domain and/or task model, while for others
such a definition is not possible. The later ones are usually
referred to as ill-defined domains and these would particularly
benefit from a mechanism that updates the domain/task model
on encounter with new relevant data.

In this paper we present our approach to on-line adaptation
of task models in eXpresser, an exploratory learning environ-
ment for the ill-defined domain of mathematical generalisation.
As learners solve a task in eXpresser, they can follow different
strategies and personalised support is dependent on the iden-
tification of the particular strategy followed by the learner.

This is a challenging task as not all strategies are known
in advance; extracting strategies from teachers is one way of
defining the task model; collecting data from pupils is another.
These, however, allow the collection of only limited amounts
of data whereas other applications of adaptive modelling, such
as intelligent control or system identification, have access to
hundreds or thousands of pieces of data.

Also, the way learners use the system changes over time.
Thus, as they acquire more knowledge of mathematical gener-
alisation, they tend to use more neat and elegant approaches.
Also, as they are taught other mathematical topics they use
that knowledge in solving tasks, e.g. use of areas to find out
the perimeter. Moreover, besides solving tasks individually,
eXpresser is used for collaborative activities, one of which
challenges learners to find a different strategy than the ones
used by one or several of their peers, leading to creative
and unpredictable approaches. Besides the diversity of the
strategies, learners also use inefficient approaches that would
make it difficult for them to generalise and that create addi-
tional problems for personalised support as these inefficient
approaches may hinder the recognition of the strategy they
follow. To address these issues evolving task modelling is
proposed in this paper with the aim to add new relevant
information to the task model as it becomes available.

The rest of the paper is organised as follows. The next
section briefly describes eXpresser and two generalisation
tasks. Section III presents the formulation of features that
describe user behaviour on the task and the mechanism for
similarity-based classification of user strategies. Section IV
presents the components and explains the phases of the mech-
anism for evolving the task models. Section V presents the
algorithms for on-line structural adaptation of the task models,
Section VI presents experiments and results obtained using
these algorithms and, finally, Section VII concludes the paper.

II. EXPRESSER

eXpresser [4] is an exploratory learning environment for
the domain of mathematical generalisation. It enables con-
structions of patterns, creating dependencies between them,
naming properties of patterns and creating algebraic-like rules
with either names or numbers. It is designed for classroom use
and targets pupils of 11-14 year-olds. Each task involves two
main phases: constructing a model and deriving an algebraic-
like rule from it.

Fig. 1 illustrates the system, the properties list of a pat-
tern (linked to another one) and an example of a rule. The
screenshot on the left includes two windows: (a) the students’
world, where the students build their constructions and (b)
the general world that displays the same construction with a
different value for the variable(s) involved in the task, and
where students can check the generality of their construction
by animating their pattern (using the Play button).

We illustrate here a task called ‘stepping stones’ (see Fig. 1)
displayed in the students’ world with a number of 3 red (lighter
colour) tiles and in the general world with a number of 8 red
tiles; the task requires to build such a construction and to find
a general rule for the number of blue (darker colour) tiles
needed to surround the red ones. The construction for this
task can be built in several ways that we call strategies. Here
we illustrate the ‘C strategy’, named after the shape of the
building-block, i.e. the basic unit of a pattern. The components
of this strategy are displayed separately in the students’ world
for ease of visualisation: a red pattern with 3 tiles, a blue one
made of a C-shape pattern repeated 3 times, and 3 blue tiles.

Fig. 1. eXpresser screenshots. The left screenshot includes a toolbar, the
students’ world and the general world. The top right screenshot shows the
property list of a pattern. The bottom right screenshot illustrates a rule.

The property list of the C-shape pattern is displayed in
the top right screenshot. The first property (A©) specifies the
number of iterations of the building-block; the value for this
attribute is set to the value of the iterations of the red pattern
by using a T-box (that includes a name and a value); by using
a T-box, the two (or more) properties are made dependent, i.e.
when the value in the T-box changes in one property, it also
changes in the other one(s). The next properties are move-right
(B©), which is set to 2, and move-down (C©), which is set to 0.
The last property (D©) establishes the number needed to colour
all the tiles in the pattern - in our case 5 times the iterations
of the red pattern. The bottom right screenshot displays the
rule for the number of blue tiles: 5xred + 3, where red stands
for the T-box displayed in A© (a T-box can be displayed with
name only, value only or both).

The construction in Fig. 1 and the rule in the bottom-right
corner constitute one possible solution for the ‘stepping stones’
task. Although in its simplest form the rule is unique, there are
several ways to build the construction and infer a rule from
its components. Thus, there is no unique solution and students
follow various kinds of strategies to construct their models -
two examples are illustrated in Fig. 2.

Another task example for eXpresser is the ‘pond tiling’ task
which requires to find the number of tiles needed to surround
any rectangular pond. Fig. 3 illustrates the construction for
this problem and two strategies frequently used by students to
solve this task. Compared to the ‘stepping stones’ task, ‘pond
tiling’ is more complex, requiring the students to generalise
using two variables rather than one. The next section presents
the strategy modelling and classification mechanisms.

Fig. 2. (a) ‘HParallel’ Strategy; (b) ‘VParallel’ Strategy.

Fig. 3. (a) the construction for the ‘pond tiling’ task ; (b) ‘I Strategy’; (c)
‘H strategy’.

III. TASK MODEL AND STRATEGY CLASSIFICATION

The Task Model (TM) includes strategies that learners
could follow when solving a task. A strategy is defined as
Si = {Pi, Ri}, where Pi represents a set of patterns and Ri

represents a set of relations between patterns of Pi.
Each pattern of Pi is defined as an attribute-value vector and

includes three types of attributes: (a) numeric, (b) variables and
(c) binary. The numeric attributes correspond to the values in
the property list and the variables correspond to the type of
those properties: number, T-box, expression with number(s)
or expression with T-box(es). The binary attributes refer to
the membership of a pattern to a strategy and is defined as a
PartOfS function which returns 1 if the pattern belongs to
the strategy and 0 if it does not. There are S binary attributes,
where S is the number of strategies in the task model.

The set of relations Ri is defined as Ri = {RAi, RPi}. RAi

is a set of relations between attributes of patterns and RPi is
a set of relations between patterns. RAi includes two types of
relations: (a) dependency relations such as the one illustrated
in Fig. 1 where the number of the iterations of the blue pattern
depends on the iterations of the red pattern through the use
of a T-box; (b) value relations such as the fact that the value
of the colouring property of the blue pattern in Fig. 1 is 5
times the value of the iterations of the red pattern. A strategy
is specific when it does not have dependency relations and
is general when it has all the dependency relations required
by the task. RPi includes ordering relations: Prev relation
indicates the previous pattern and Next relation indicates the
next pattern, with respect to the current pattern. The structure
of strategies is displayed in Fig. 4.

Fig. 4. The structure of strategies.

To provide personalised support while learners are solving
a task, it is important to identify what strategies they are
using, so that the support is about the particular approach
used rather than a predefined strategy that has little to do
with the learner’s current thinking. The strategy identification
is in fact a similarity-based classification problem [5], where
the training samples are the strategies stored and each class
has only one exemplar. A new construction is classified by

calculating the distance to all training samples and choosing
the label of the closest one (k-nearest neighbor with k=1).

The similarity metrics used for patterns, relations and strate-
gies are displayed in Fig. 5; four different metrics are used for
two reasons: (a) different types of data, i.e. numeric, string,
sets, call for different metrics and (b) the four categories (see
Fig. 5) are valuable for providing personalised feedback, e.g.
if the learner needs to work on the structure of the strategy or
on the relations between patterns. The overall similarity metric
for strategies is: Sim = w1 ∗F1+w2 ∗F2+w3 ∗F3+w4 ∗F4,
where F1 is the normalised value of F1. To bring F1 in
the same range as the other metrics, i.e. [0, 1], we applied
linear scaling to unit range [6] using the function F1 = F1/z.
Weights are applied to the four similarity metrics to express
the central aspect of the construction, the structure. This is
mostly reflected by the F1 metric and, to a lesser extent, by
the F3 metric. Therefore, we agreed on the following weights:
w1 = 6, w2 = 1, w3 = 2, w4 = 1. This leads to the range of
[0, 10] for the values of Sim.

Fig. 5. Similarity metrics for patterns/relations and strategies.

In classroom sessions with pupils we have observed that
some pupils tend to build some patterns inefficiently - mainly
by grouping several individual tiles and using that group as
the building block. This information is useful for teachers and,
therefore, it should be included in the TM; it could also be
incorporated in the strategy classification mechanism when we
have knowledge about how these inefficient patterns affect the
recognition of strategies. However, inefficient constructions
that are likely to be used by learners are hard to identify.
Therefore, initially the TM includes only strategies and ineffi-
cient patterns are added into a separate set on-line, when such
patterns are identified.

IV. EVOLVING TASK MODELLING

The evolution process is displayed in Figure 6. As the
learner is solving a task and making a construction using
eXpresser, the Strategy Identification Module, using the input
from the Task Model (i.e. the strategies) identifies the strategy
used by the learner through the similarity-based approach
presented in the previous section. However, sometimes the
learners’ constructions, either partially or as a whole, are
dissimilar to the information stored in the TM. If that is
the case, the Evolution Monitor Module verifies if the new

situations are relevant for the task and if they should be added
to the TM. If the verification is successful, the Adaptation
Mechanism updates the TM, adjusting its structure and the
structure of its patterns. The process includes five phases:
Phase 1. Start with a TM that has some strategies introduced
by the researcher/teacher.
Phase 2. Collect new data on-line.
Phase 3. Calculate similarity between new data and stored
strategies (Strategy Identification Module) using the metrics
from Section III. If the similarity is between certain boundaries
specified in the Evolution Monitor Module and checked by
Algorithms 1 and 4 (Section V), go to next phase. Else, stop.
Phase 4. Using Algorithms 2 and 5 (Section V), perform
controls on new data to verify whether these represent a
new valid strategy or a new inefficient approach that can be
considered part of an existing strategy. If satisfied, go to next
phase. Else, stop.
Phase 5. Using Algorithms 3 and 6 (Section V), adapt the
structure of the TM by adding the new strategy and updating
the structure of patterns, or by adding a new inefficient pattern
(Adaptation Module).

Two examples together with the algorithms for the TM on-
line structural adaptation are presented in the next section.

Fig. 6. The evolution process consists of structure adaptation and features
adaptation.

V. STRUCTURE ADAPTATION

For certain applications, like educational systems, it is
highly desirable to be able to evolve the structure of the task
models used in the similarity-based identification mechanism
without having to rebuild the system. On-line algorithms
have been developed to identify and add new strategies and
new inefficient patterns to the task model structure, without
affecting the recognition of the ones already in the TM. There-
fore, adding new strategies and new inefficient patterns does
not require modifications of the similarity-based identification
mechanism to deal with the new data.

To add a new strategy to the TM structure, a new set of
patterns and their relations needs to be added and then each
pattern (either efficient or inefficient) needs a new PartOfS
attribute that reflects whether it belongs to the newly intro-
duced strategy or not. Therefore, the structure of TM and of
the patterns are modified. Similarly, when a new inefficient
pattern is added the structure of TM is modified.

Fig. 7 shows two examples from the ‘stepping stones’ task
introduced previously for an inefficient pattern and a new
strategy; the constructions in Fig. 7a and 7c have been broken
down into the individual components used by the students for
ease of visualisation. These examples and the corresponding
algorithms are detailed in the following subsections.
A. Inefficient patterns acquisition mechanism

The goal of this mechanism is to identify patterns of
strategies constructed in inefficient ways and store them in

a library of ‘inefficient patterns’, i.e. constructions that pose
difficulties for the learners in their process of generalisation.
The library could be further used for automatic generation of
feedback, or could be analysed by a researcher or teacher. The
results of such an analysis could be then used to design better
interventions or make other design decisions for the current
system, could be presented as a lesson learned to the scientific
community of mathematics teachers and researchers, or even
discussed further in class (e.g if an inefficient construction is
frequently used by the pupils of that class).

Fig. 7. (a) HParallel strategy with one inefficient component (blue middle
row) ; (b) property list of the inefficient component; (c) a new strategy

The construction in Fig. 7a illustrates an inefficient pattern
within the “HParallel” strategy of the ‘stepping stones’ task:
the middle bar of blue tiles is constructed as a group of two
tiles repeated twice - this can be seen in the property list of
this pattern displayed in Fig. 7b. The efficient way to construct
this component is one tile repeated four times or, to make it
general, one tile repeated the number of red tiles plus one. The
efficient and the inefficient way of constructing the middle row
of blue tiles lead to the same visual output, i.e. there is no
difference in the way the construction looks like, making the
situation even more confusing. The difficulty lies in relating
the values used in the construction of the middle row of blue
tiles (Pi) to the ones used in the middle row of red tiles (Pj).
If the learner would relate the value 2 of iterations of Pi to
the value 3 of iterations of Pj , i.e. the value 2 is obtained by
using the number of red tiles (3) minus 1, this would work
only for a ‘stepping stones’ task defined for 3 red tiles. In
other words, this will not lead to a general model.

Algorithms 1, 2 and 3 illustrate how inefficient patterns are
identified and stored. First, the most similar strategy is found.
If there is no exact match, but the similarity is above a certain
threshold θ, the process continues with the identification of the
inefficient patterns; for each of these patterns, several checks
are performed (Alg. 2). Upon satisfactory results and if the
patterns are not already in the set of inefficient patterns, they
are then stored (Alg. 3).

B. New strategies acquisition mechanism

The goal of this mechanism is to identify new strategies and
store them for future use. New strategies could be added by
the teacher or could be recognized as new from the learners’
constructions. In the later case, after the verification checks
described below, the decision of storing a new strategy is left
with the teacher. This serves as another validation step.

Fig. 7c illustrates the so-called “I strategy”, as some of its
building blocks resemble the letter I. When compared to all
stored strategies, this strategy is rightly most similar to the

‘VParallel’ one (see Fig. 2b), as some patterns correspond
to it. However, the similarity is low, suggesting it may be a
new strategy. Without any form of TM adaptation, the learner
modelling module will infer that the learner is using the
‘VParallel’ strategy, but is still far from having completed it.
This imprecise information could be potentially damaging as
it could, for example, lead to inappropriate system actions, e.g.
providing confusing feedback that would guide the learner to-
wards the ’VParallel’ strategy. Conversely, identifying the new
construction as a new valid strategy will prevent generating
potentially confusing feedback, and storing the new strategy
will enable producing appropriate feedback in the future -
automatically or with input from the teacher/researcher.

Algorithm 1 Verification(Strategies, InefficientPatterns,
InputStrategy)

Find most similar strategy to InputStrategy from Strategies
StoredStrategy ← most similar strategy;
if similarity > θ then

Find patterns of InputStrategy that are not an exact match to any
pattern of StoredStrategy
for each patterns that is not an exact match do
InputPattern← the pattern that is not an exact match
Compare InputPattern to all patterns in InefficientPatterns;
if no exact match then

Find the most similar pattern to InputPattern from the patterns
of StoredStrategy
StoredPattern← the most similar pattern
if Conditions(StoredPattern, InputPattern) returns true
then {see Alg. 2}

InefficientPatternAcquisition(StoredPattern,
InputPattern) {see Alg. 3}

end if
end if

end for
end if

Algorithm 2 Conditions(P1, P2)
if (MoveRight[P1] 6= 0 and Iterations[P1] ∗ MoveRight[P1] =
Iterations[P2] ∗MoveRight[P2]) or
(MoveDown[P1] 6= 0 and Iterations[P1] ∗ MoveDown[P1] =
Iterations[P2] ∗MoveDown[P2]) then

return true
else

return false
end if

Algorithm 3 InefficientPatternAcquisition(StoredPattern,
InputPattern, InefficientPatterns)
NewPattern← StoredPattern
for i = 1 to w do {all attributes}

if value of attribute i of NewPattern different from that of
InputPattern then

replace value of attribute i of NewPattern with the one of
InputPattern

end if
end for
add NewPattern to InefficientPatterns

Algorithms 4, 5 and 6 illustrate the process by which an
input strategy is identified and stored as a new strategy. If
the similarity between the input strategy and the most similar
strategy in the TM is below a certain threshold θ1 (Alg. 4),
some validation checks are performed (Alg. 5) and upon
satisfaction, the new strategy is stored in the TM (Alg. 6).
If the input strategy has been introduced by a teacher and
the similarity is below θ1, the teacher can still store the new
strategy, even if it is very similar to an existing one in the TM.

In Algorithm 5 the SolutionCheck(InputStrategy) func-
tion verifies whether InputStrategy ‘looks like’ a solution by
examining if the mask of InputStrategy corresponds to the
mask of the task. The following check takes into consideration
the number of patterns in the InputStrategy. Good solutions
are characterized by a relatively small number of patterns;
therefore, we propose for the value of θ2 the maximum number
of patterns among all stored strategies for the corresponding
task, plus a margin error (such as 3). If this check is satisfied,
the RelationVerification(InputStrategy) function derives a
rule from the value relations of the InputStrategy and
checks its correspondence to the rule solution of the task. For
example, in the construction of Fig. 7c, the rule derived is
3 ∗ (red2 + 1) + 7 ∗ red

2 which corresponds to the solution
5 ∗ red + 3. If all checks are satisfied, the new strategy is
stored in the TM and the PartOfS values are adjusted.
Algorithm 4 NewStrategyVerification(Strategies, InputStrategy)

Find most similar strategy to InputStrategy from Strategies
if similarity < θ1 then

if ValidSolution(InputStrategy) returns true then {see Alg. 5}
NewStrategyAcquisition(InputStrategy) {see Alg. 6}

end if
end if

Algorithm 5 ValidSolution(InputStrategy)
if SolutionCheck(InputStrategy) returns true then {checks if
InputStrategy ‘looks like’ a solution}

if the number of patterns of InputStrategy < θ2 then
if InputStrategy has relations between attributes then

RelationVerification(InputStrategy) {verifies that the numeric
relation corresponds to the task rule solution}
if successful verification then

return true
end if

end if
end if

end if
Algorithm 6 NewStrategyAcquisition(NewStrategy)

add NewStrategy to Strategies
adjust values of PartOfS

VI. EXPERIMENTS

The similarity-based classification has been tested using 36
constructions from classroom and individual sessions, result-
ing in 100% accuracy for identification of complete strategies,
partial strategies (strategies with missing patterns) and mixed
strategies (combinations of two or more strategies). As in this
paper we focus on the evolving mechanism, in the rest of the
section we present experiments that test its behaviour.

Three experiments were designed to test the evolving mech-
anism. The purpose of the first one was to identify the
bounds for the inefficient modifications of a pattern that still
allows its recognition as similar to the original efficient form.
The second experiment looks at the correct identification of
inefficient patterns within the bounds previously identified.
The third experiment examines the correct identification of
new strategies.

The data used in these experiments is a combination of
real data from classroom sessions with eXpresser and artificial
data that simulated observed situations from classroom trials.
The simulated situations were obtained by varying parameters

of patterns/strategies produced by learners and were used to
provide us with more data.

Prior to the three experiments a small study was conducted
on classroom data to identify possible values for the threshold
θ in Algorithm 1 and threshold θ1 in Algorithm 4. We aimed
at identifying good enough values rather than seeking optimal
ones, as our main goal was to test the evolving mechanism.
Two possibilities were established for each threshold: for θ -
the minimum overall similarity (4.50) minus an error margin
(0.50) or value 1.00 for the numerical similarity; for θ1: the
maximum overall similarity (3.20) plus an error margin (0.30)
or value 1 for the numeric similarity.

Experiment 1: identifying the bounds of how far a pattern
can be inefficiently modified and still be recognised as similar
to its original efficient form. As mentioned previously, we
consider changes in a pattern that can lead to the same visual
output as the original one but use different building-blocks.
More specifically, these building-blocks are groups of two or
more of the original efficient building-block. This experiment
looks for the changes that a pattern can undergo without losing
its structure so that it can still be considered the same pattern.

For this experiment we used 34 artificial inefficient patterns
from the two tasks introduced in Section II: ‘stepping stones’
and ‘pond tiling’. From the 34 patterns, 47% were from
the ‘stepping stones’ task and 53% were from the ‘pond
tiling’ task. Using these patterns, the following bounds were
identified: (i) groups of less than 4 building-blocks; (ii) groups
of 2 building-blocks repeated less than 6 times and (iii) groups
of 3 building-blocks iterated less than 4 times.

TABLE I
BOUNDS FOR RECOGNITION OF INEFFICIENT PATTERNS

Recognisable Not recognisable Efficient pattern

To illustrate these bounds the ‘C Strategy’ of the ‘stepping
stones’ task is used in Table I. The building block of this
strategy is a ‘C shape’ pattern. The 1st column illustrates an
inefficient pattern that is still recognisable as similar to the
efficient form displayed in the 3rd column and the 2nd column
displays an inefficient pattern that is not recognisable anymore
as similar to the efficient form. The three rows correspond
to the three bounds mentioned above. The iterations of the
efficient pattern from the 3rd column refer to the number of
iteration needed to obtain the same shapes as the ones from the
1st and the 2nd column. For example, in the 1st row, the ‘3/4
iterations’ denotes that 3 iterations are needed to obtain the
same shape as the one in the 1st column and that 4 iterations
are needed to obtain the same shape as the one in the 2nd
column; the property list displays the first value.

Although to the human eye, the differences between the
recognisable and not recognisable inefficient patterns seem
very small because of the awareness of the sub-pattern that
is repeated, the metrics at the moment do not incorporate that
knowledge. In the future, we plan to develop a mechanism
that detects sub-patterns and to integrate that information in
the metrics used for the similarity-based classification.

Experiment 2: correct identification of inefficient patterns
within the previously identified bounds. From the total of 34
inefficient patterns used in Experiment 1, 13 were outside the
identified bounds and 21 were within. From the 21 patterns
within the bounds, 62% were from the ‘stepping stones’ task
and 38% were from the ‘pond tiling’ task. Using the previously
identified values for θ, we obtained the following results: out
of these 21 patterns, 52.48% had the overall similarity greater
than 4.00 and 100% had the numeric similarity above 1.00.

These results indicate that a relatively small modification
of a pattern can significantly affect the identification of the
strategy the learner is following; hence almost half the patterns
have an overall similarity less than 4.00. For example using
any of the patters in column two of Table I with the other
efficient components of the ‘C strategy’, leads to a small
similarity when compared to the ‘C strategy’.

Experiment 3: correct identification of new strategies. The
data for this experiment included 10 new strategies: 7 observed
in trials with pupils and 3 artificial. Out of the 10 new
strategies, 4 were from the ‘pond tiling’ task; all of them
were observed in trials with pupils. The remaining 6 new
strategies were from the ‘stepping stones’ task, with 3 of them
observed and 3 artificial. The task models for the two tasks
included originally 4 strategies for the ‘stepping stones’ task
and 2 strategies for the ‘pond tiling’ task. Using the previously
identified values for θ1, we obtained the following results: out
of the 10 new strategies, 100% had the overall similarity below
3.50 and 70% had the numeric similarity below 1.00. Given
the range that the overall similarity has, i.e. 0 to 10, values
below 3.50 indicate a very low similarity and therefore, rightly
suggest that the learner’s strategy is considerably different
from the ones in the task model.

A summary of results is displayed in Table II. They show
that the algorithms are capable of recognising new relevant

data with an accuracy of 100% using two of the previously
identified values for the thresholds.

TABLE II
SUMMARY OF RESULTS

Experiment Threshold Accuracy
Identification of Overall similarity 4 52.48%
inefficient patterns Numeric similarity 1 100%
Identification of Overall similarity 3.50 100%
new strategies Numeric similarity 1 70%

As already mentions in Section III, the numeric similarity
(F1) reflects the structure of a construction. Therefore, using
the numeric similarity for the thresholds θ and θ1 identifies
structural modification - performing very well in Experiment 2,
where all changes are numerical, but not as well in Experi-
ment 3, where the changes are not exclusively numerical. As
a strategy is not defined only by patterns and their structure,
but by relations as well, the overall similarity performs better
in Experiment 3.

VII. CONCLUSION

In this paper we have presented an approach for task
model evolution in the context of an exploratory learning
environment for mathematical generalisation. The task model
includes initially a limited number of strategies that learners
may adopt when solving a task. Using our proposed evolving
mechanism, the task model is gradually enriched with more
strategies and with a set of inefficient patterns, i.e. construc-
tions that make the process of generalisation more difficult for
the learner. Similarity-based classification is used for strategy
identification and the same similarity metrics are employed
in the identification of new relevant data. This mechanism
enables the addition of new classes without affecting the
recognition of the existing ones.

ACKNOWLEDGMENT

This work is partially funded by the ESRC/EPSRC Teaching
and Learning Research Programme (Technology Enhanced
Learning); Award no: RES-139-25-0381.

REFERENCES

[1] P. Angelov and D. Filev, “An approach to online identification of
takagi-sugeno fuzzy models,” IEEE Transactions on Systems, Man and
Cybernetics, Part B, vol. 34, no. 1, pp. 484–498, 2004.

[2] M. Sasajima, Y. Kitamura, T. Naganuma, S. Kurakake, and R. Mizoguchi,
“Oops: User modeling method for task oriented mobile internet services,”
in Proceedings of WI ’07. IEEE Computer Society, 2007, pp. 771–775.

[3] P. Brusilovsky and D. W. Cooper, “Domain, task, and user models for
an adaptive hypermedia performance support system,” in Proceedings of
IUI ’02. ACM, 2002, pp. 23–30.

[4] D. Pearce, E. Geraniou, M. Mavrikis, S. Gutiérrez, and K. Kahn, “Using
pattern construction and analysis in an exploratory learning environment
for understanding mathematical generalisation: The potential for intel-
ligent support,” in Proceedings of the 1st ISEE Workshop, EC-TEL’08,
2008, pp. 21–30.

[5] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti,
“Similarity-based classification: Concepts and algorithms,” J. Mach.
Learn. Res., vol. 10, pp. 747–776, 2009.

[6] S. Aksoy and R. M. Haralick, “Feature normalization and likelihood-
based similarity measures for image retrieval,” Pattern Recognition Let-
ters, vol. 22, no. 4, pp. 563–582, 2001.

