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Abstract

Individual and/or hybrid AI techniques are often used in learning environ-
ments for well-structured domains to perform learner diagnosis, create and up-
date a learner model and provide support at the individual or group level. This
paper presents a conceptual model that employs a synergistic approach based on
Case-Based Reasoning (CBR) and Multicriteria Decision Making (MDM) com-
ponents for learner modelling and feedback generation during exploration in an
ill-defined domain of mathematical generalisation. The model uses a CBR compo-
nent to represent and match the learners’ constructions and the strategies adopted
during exploratory learning activities. The CBR component is used to diagnose
what students are doing on the basis of simple and composite cases that allow a
detailed diagnosis of the learners’ constructions and facilitate contextualised and
personalised feedback. Simple cases represent parts of the models that the learners
could possibly construct during an exploratory learning activity, while composite
cases, which are assembled from simple cases, correspond to strategies that learn-
ers may adopt to construct their models; similarity measures are used to identify
how close/far are the learners from solutions pre-specified and stored in the knowl-
edge base. This information is then fed into the MDM component that is responsi-
ble for prioritising types of feedback depending on the context. This is based on a
formulation of the feedback generation problem in terms of a multicritiria decision
making: a set of criteria are considered together with a set of alternatives, the later
corresponding to different types of feedback. The operation of the two compo-
nents and the effectiveness of the synergistic approach are validated through user
scenarios in the context of an exploratory learning environment for mathematical
generalisation.

1 Introduction
Intelligent Learning Environments (ILEs) make use of a variety of AI techniques, ei-
ther in stand alone mode or in combination with others. Among such techniques are:
case-based reasoning [59, 19], neural networks [2], Bayesian networks [4, 10], genetic
and evolutionary algorithms [51], neuro–fuzzy systems [57], genetic algorithms and
∗emails: {mihaela;gmagoulas}@dcs.bbk.ac.uk

1



case-based reasoning [24], expert systems with genetic algorithms [31], hybrid rules
integrating symbolic rules with neurocomputing [20].

Our work focuses on a particular class of ILEs that adopt the principles of dis-
covery learning, which emphasises opportunities to learn through free exploration and
discovery rather than guided tutoring. Exploratory Learning Environments (ELEs) are
built on this idea and with the principles of constructivism paradigm for teaching and
learning in mind. This approach has proved to be beneficial for learners in terms of ac-
quiring deep conceptual and structural knowledge. However, discovery learning with-
out guidance and support appears to be less effective than step-by-step guiding learning
environments [27]. To this end, an understanding of learner’s behaviour and knowledge
construction is needed [44].

Simulations are used in most existing ELEs as a way of actively involving learners
in the learning process (e.g. [60], [25]) and cognitive tools [62] are deployed to support
their learning. Few such systems model learner’s knowledge/skills; for example [4]
and [10] use bayesian networks, while [57] combines neural networks with fuzzy rep-
resentation of knowledge. Another category of ELEs is closer to the constructivist
approach by allowing the learner to construct their own models rather than explore a
“predefined” one. Compared to conventional learning environments and even environ-
ments that use simulations, this type of ELE requires approaches to learner modelling
that would be able to capture and model the useful interactions that take place as learn-
ers construct their models.

In this paper, we present a conceptual model for learner modelling and feedback
generation, which is suitable for ELEs that involve exploring simulations and construct-
ing models. This is based on a hybrid approach that exploits the synergy of case-based
reasoning and multicriteria decision making. A novel use of case-based representation
is presented, with a different level of information granularity: simple cases represent
parts of a problem solution, while composite cases represent different solutions of the
same problem. Also, feedback prioritisation is formulated as a multicriteria decision
problem and, more specifically, in terms of Analytic Hierarchy Process (AHP), one of
the most popular methods of MDM; the AHP is thus used in new context, i.e. feedback
generation. Scenarios-based validation is used to assess the behaviour of the model in
the context of an exploratory environment for teaching mathematical generalisation.

The rest of the paper is organised as follows. The subsequent section presents a
review on hybrid approaches involving the two components of the proposed model, i.e.
CBR and MDM. Section 3 introduces the application domain, namely mathematical
generalisation, and the ELE used, called ShapeBuilder; it also discusses the challenges
involved in the particular application domain. Section 4 describes the modules of the
system and discusses how they are organised to support learner modelling and feedback
generation. Sections 5 and 6 present the two components of the hybrid model. Section
5 describes the case-based reasoning formalisation in the context of ShapeBuilder and
validates the operation of the CBR component through a scenario, whilst Section 6
addresses the multicriteria decision making component and its validation. Section 7
validates the synergy of the two components through a scenario that shows how the
two methods are combined and coordinated, and effectively work together. Lastly,
Section 8 concludes the paper and outlines our future plan.
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2 Relevant Work on Synergistic Approaches involving
CBR and MDM

Many real applications use hybrid approaches in order to combine the strengths or
compensate for the weaknesses of different methods. Our model combines Case-based
Reasoning with the Analytic Hierarchy Process, a method from Multicriteria Decision
Making, for learner modelling and feedback generation. This combination of methods
has been used for message filtering [35] and bankruptcy prediction [47], and both CBR
and AHP are very often used in combination with other methods.

Among others, CBR has been used in various domains (e.g. engineering, man-
ufacturing, medical diagnosis, e-Learning) in combination with other methods like:
rule-based approaches [38], association-based case reduction technique [39], fuzzy
logic [7, 64], genetic algorithms [24], neural networks [48], statistical methods [9], on-
tologies [63], model-based reasoning [40], knowledge discovery and data mining [65,
46]. CBR has also been used in combination with more than just one method: generic
algorithms and knowledge discovery and data mining [65]; rule-based reasoning and
fuzzy logic [5]; neural networks and fuzzy logic [55]; neural networks, fuzzy theory,
induction, utility theory, and knowledge-based planning [23].

Mulicriteria Decision Making (MDM) has many applications in fields where de-
cisions need to be taken. The Analytic Hierarchy Process is one of the most popular
methods in MDM and is widely applied in a diversity of areas such as logistics [6, 49],
military applications [30, 11], manufacturing [13, 56], health-care applications [34, 37]
and most of the time in combination with other methods [22]. A recent literature re-
view [22] reports five main categories of tools integrated with AHP: (a) mathematical
programming, (b) quality function development, (c) meta-heuristics, (d) SWOT anal-
ysis and (e) data envelopment analysis. Four works related to higher education are
reported in areas of IT-based project selection [33], teaching method selection [36],
education requirement selection [28] and faculty course assignment [45].

In the area of learner/user modelling, AHP has been used in combination with
fuzzy logic [16] for student diagnosis in an adaptive hypermedia educational system
and in combination with Multi-Attribute Utility Theory (MAUT), another method from
MDM, in recommender systems [53], where the evaluation function from MAUT is
used to rate how well each alternative fulfills the decision criteria.

The following sections present the domain of mathematical generalisation and the
ELE used in our work, called ShapeBuilder.

3 Exploratory Learning for Mathematical Generalisa-
tion

Mathematical generalisation (MG) is associated with algebra, as “algebra is, in one
sense, the language of generalisation of quantity. It provides experience of, and a
language for, expressing generality, manipulating generality, and reasoning about gen-
erality” [41].

However, students do not associate algebra with generalisation as the algebraic
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language is perceived as been separate from what it represents [26]. To address this
problem the ShapeBuilder system [17, 50] , which is an ELE developed in the con-
text of the MiGen project 1, aims to facilitate the correspondence between the models,
patterns and structures (visual representations) that the learners build, on one hand,
and their numeric, iconic and symbolic representations, on the other hand. Shape-
Builder (see Figure 1) allows the construction of different shapes [18], e.g. rectangles,
L-shapes, T-shapes and supports the three types of representations aforementioned:
(a) numeric representations that include numbers (constants or variables) and expres-
sions with numbers; (b) iconic representations which correspond to icon variables;
(c) symbolic representations that are names or symbols given by users to variables
or expressions. An icon variable has the value of a dimension of a shape (e.g. width,
height) and can be obtained by double-clicking on the corresponding edge of the shape.
It is represented as an icon of the shape with the corresponding edge highlighted (see
Figure 2a).

Figure 1: The layout of the ShapeBuilder. (a) the Expression Toolbar; (b) the Shape
List; (c) the overall ShapeBuilder interface (the gridded area is the interaction canvas);
(d) the Expression Palette. The figure is reproduced from [17].

Constants, variables and numeric expressions lead to specific constructions/models,
while icon variables and expressions using them lead to general ones. Through the use
of icon variables, ShapeBuilder encourages structured algebra thinking, connecting
the visual with the abstract (algebraic) representation, as “each expression of gener-
ality expresses a way of seeing” [41] (see Figure 2b). It also uses the “messing up”
metaphor [21] that consists of asking the learner to resize a construction and observe
the consequences; the model will “mess up” only if it is not general (see Figures 2c and
d), indicating learner’s lack of generalisation ability.

In the development of the system two phases of the cooperative inquiry design [12]
were used: (a) a contextual inquiry phase, when data was collected in the user’s envi-
ronment (in our case, classrooms), and (b) a participatory design phase, when teachers
were involved in the design of prototypes and children tested the developed prototypes.
Data from both phases was used in subsequent design iterations and informed further
development decisions. User-centred iterative approaches, like the one followed in

1Funded by ESRC, UK, under TLRP e-Learning Phase-II (RES-139-25-0381); http://www.tlrp.
org/proj/tel/tel_noss.html.
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the design of ShapeBuilder, take more development time compared to other software
development methodologies [15].

When attempting to model the learner and provide feedback in an ELE for such
a wide domain as MG, several challenges arise. The main and widely acknowledged
challenge is to balance freedom with control: learners should be given enough freedom
so that they can actively engage in activities but they should be offered enough guidance
and feedback in order to assure that the whole process reflects constructivist learning
and leads to useful knowledge [43]. This and some other challenges are summarised in
Table 1 with examples from the domain of mathematical generalisation.

Figure 2: (a) A rectangular shape and its icon variable; (b) an expression using icon
variables; (c) “messing up”; (d) general solution that does not “mess up”.

Given the challenges mentioned in Table 1 a conventional learner modelling ap-
proach does not fit the purposes of ELEs. Due to the exploratory nature of the activities
and the diversity of possible trajectories, flexibility in the representation of information
and handling multiple feedback are two important aspects for effectively supporting the
learning process. As case-based reasoning offers flexibility of information representa-
tion and multicriteria decision making techniques handle prioritization of alternatives,
a combination of the two is used. The following sections presents the overall architec-
ture and the components of the hybrid model.

4 An Architecture for Learner Modelling and Feedback
Generation

The architecture of the proposed model and its relationships with the ShapeBuilder en-
vironment are represented in Fig. 3. As the learner interacts with the system through
the interface, the actions of the learner are stored in the Short-Term (STM) part of
the Learner Model (LM) and are passed to the Interactive Behaviour Analysis Module
(IBAM) where they are processed in cooperation with the Task Model from the Knowl-
edge Base (KB); the results are fed into the Task Long-Term (LTM) part of the learner
model. The Feedback Module (FM) is informed by the LM and the KB and feeds back
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Table 1: Challenges for learner modelling and feedback in exploratory learning for
mathematical generalisation.
Challenge Example
Balance between freedom
and control

When a learner is trying to produce a general represen-
tation, for how long should he be left alone to explore
and when does feedback become necessary?

What should be modelled? Besides learner’s knowledge of MG concepts (e.g. use
of variables, consistency between representations, etc.),
other aspects need to be modelled in order to support the
learner during exploration: shapes constructed, relations
between shapes, etc.

Do both correct and incor-
rect learner actions or be-
haviours have value?

In exploratory learning it is difficult to categorise actions
or learner’s explorations into “correct” and “incorrect”.
Moreover, actions that might lead to incorrect outcomes
such as resizing can be more valuable for constructivist
learning than “correct” actions.

Reasoning about abstract
knowledge

Can consistency be inferred from the fact that a learner
is checking the correspondence between various forms
of representations? If so, is that always true? Are there
any exceptions to this rule?

Underlying strategies As it is neither realistic nor feasible to include all possi-
ble outcomes (correct or incorrect) to model the domain
of MG, only key information with educational value
could be stored, such as strategies in solving a task. The
challenge is how to represent and detect them.
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to the learner through the interface. A part of the FM, the Feedback Priorities (FP)
component which is responsible for handling multiple feedback, is informed by the
Task LTM and Domain LTM of the learner model (the double-line arrows in Fig. 3).

Figure 3: Intelligent components and their interrelationships.

The KB includes two components (see Figure 3): a domain and a task model.
The domain model includes high level learning outcomes related to the domain (e.g.
using variables, structural reasoning, consistency, etc.) and considers that each learning
outcome can be achieved by exploring several tasks. The task model includes different
types of information: (a) strategies of approaching the task which could be correct,
incorrect or partially correct; (b) outcomes of the exploratory process and solutions to
specific questions associated with each (sub)task; (c) landmarks, i.e. relevant aspects
or critical events occurring during the exploratory process; (d) contexts, i.e. reference
to particular (sub)tasks.

The Learner Model has three components: (a) a Short-Term Model where the recent
actions of the learner are stored and passed to the IBAM component; (b) a Task Long-
Term Model that contains information about the tasks performed by the learner and
which is updated via the IBAM; (c) a Domain Long-Term model which is an overlay
model of the Domain Model.

The IBAM component uses case-based reasoning to identify what learners are do-
ing (having information from the STM component of the LM) and be able to inform the
feedback module as they explore a (sub)task. More specifically, as they are working
in a specific subtask, which specifies a certain context, their actions are preprocessed,
current cases are identified and matched to the cases from the Task Model (the case
base), and this information is passed to the Task LTM.

Multicriteria decision making [14] is used in the Feedback Priorities component of
the Feedback Module to obtain priorities between several aspects that require feedback
depending on the current (sub)task and context (Task LTM) and on user’s characteris-
tics (Domain LTM).
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5 The Case-Based Reasoning Component
In CBR [29] the knowledge is stored as cases, typically including the description of a
problem and the corresponding solution. When a new problem is encountered, similar
cases are searched and the solution is adapted from one or more of the most similar
cases.

Although CBR has been used successfully in applications for domains like legal
reasoning [1], stock market prediction [8], recommender systems [32], and other areas,
there is little research on using CBR for e-Learning environments. For example, [19]
uses CBR in the learner modelling process and call this approach case-based student
modelling; while [24] uses CBR and genetic algorithms to construct an optimal learn-
ing path for each learner. CBR is used also in [59] within a case-based instruction
scenario rather than a method for learner modelling. To the best of our knowledge,
there is no previous work in the area of ELEs that use CBR or CBR combined with
other intelligent methods.

The advantage of CBR for learning environments and especially for ELEs is that
the system does not rely only on explicit representation of general knowledge about
a domain, but it can also use specific knowledge previously experienced [19]. It also
seems promising for improving the effectiveness of complex and unstructured decision
making [24] in combination with other computing methods.

5.1 Case-based Knowledge Representation
In our research, the cases contain information describing models that learners could
construct using ShapeBuilder. Different strategies in approaching a problem (i.e. con-
structing a model to meet a particular learning objective) are represented as a series of
cases that reflect possible exploratory trajectories of learners as they construct models
during the various (sub-)tasks.

The cases were built using input from the contextual and the participatory phase
of the design methodology described in Section 3. The collected data (i.e. log files,
notes, videos) was analysed and synthesized, leading to the knowledge representation
presented below. Learner-centred iterative approaches, like the one adopted in our
work for eliciting the information represented and designing the cases, are naturally
more time consuming than standard development methodologies [15].

A case is defined as Ci = {Fi, RAi, RCi}, where Ci represents the case and Fi
is a set of attributes. RAi is a set of relations between attributes and RCi is a set of
relations between Ci and other cases respectively.

The set of attributes is represented as Fi = {αi1 , αi2 , . . . , αiN }. It includes three
types of attributes: (a) numeric, (b) variables and (c) binary. Variables refer to different
string values that an attribute can take, and binary attributes indicate whether a case can
be considered in formulating a particular strategy or not. This could be represented as
a “part of strategy” function: PartOfSu : Ci → {0, 1},

PartOfSu =
{

1 if Ci ∈ Su
0 if Ci /∈ Su,
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where Su represents a strategy and is defined further on. The set of attributes of a
generic case for ShapeBuilder is presented in Table 2. The first v attributes (αij , j =
1, v) are variables, the ones from v + 1 to w are numeric (αij , j = v + 1, w) and the
rest are binary (αij , j = w + 1, N ).

Table 2: The set of attributes (Fi) of a case.
Category Name Label Possible Values
Shape Shape type αi1 Rectangle(/L-Shape/T-Shape)
Dimensions Width type αi2 constant (c)/variable (v)/
of shape icon variable (iv)/

numeric expression (n exp)/
expression with iv(s) (iv exp)

Height type αi3 c /v /iv /n exp /iv exp
...

...
...

Thickness type αiv c /v /iv /n exp /iv exp
Width value αiv+1 numeric value
Height value αiv+2 numeric value

...
...

...
Thickness value αiw c /v /iv /n exp /iv exp

Part of PartOfS1 αiw+1 1
Strategy PartOfS2 αiw+2 0

...
...

...
PartOfSr αiN 0

The set of relations between attributes of the current case and attributes of other
cases (as well as attributes of the same case, if there are any present) is represented as
RAi = {RAi1 , RAi2 , . . . , RAiM }, where at least one of the attributes in each relation
RAim ,∀m = 1,M , is from the set of attributes of the current case Fi. Two types of
binary relations are used: (a) a dependency relation (Dis ) is defined as (αik , αjl) ∈
Dis ⇔ αik = DEP (αjl), where DEP : αik → αjl for attributes αik and αjl that are
variables of cases i and j (where i = j or i 6= j), and means that αik depends on (is
built upon) αjl (if i = j, k 6= l is a condition as to avoid circular dependencies) (e.g.
the width type of a case is built upon the height type of the same case; the width type
of a case is built upon the width type of another case, an so on); (b) a value relation
(Vis ) is defined as (αik , αjl) ∈ Vis ⇔ αik = f (αjl), where αik and αjl are numeric
attributes and f is a function and could have different forms depending on context (e.g.
the height of a shape is two times its width; the width of a shape is three times the
height of another shape, etc.). The set of relations between attributes is presented in
Table 3.

The set of relations between cases is represented asRCi = {RCi1 , RCi2 , . . . , RCiP },
where one of the cases in each relation RCij ,∀j = 1, P is the current case (Ci).
Two relations about order in time are defined: (a) Prev relation indicates the previ-
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Table 3: The set of relations between attributes (RAi) of cases.
Relation Label Example
Dependency relation Di1 (RAi1 ) (αik , αjl) ; k, l = 2, v;∀j

...
...

Dit (RAit ) (αik , αjl) ; k, l = 2, v;∀j
Value relation Vi1 (RAit+1 ) (αik , αjl) ; k, l = v + 1, w;∀j

...
...

Viz (RAiM ) (αik , αjl) ; k, l = v + 1, w;∀j

ous case with respect to the current case: (Ci, Cj) ∈ Prev if t (Cj) < t (Ci) and
(b) Next relation indicates the next case with respect to the current case: (Ci, Ck) ∈
Next if t (Ci) < t (Ck). Each case includes at most one of each of these two relations
(p ≤ 2).

A strategy is defined as Su = {Nu(C), Nu(RA), Nu(RC)}, u = 1, r , where
Nu(Ci) is a set of cases, Nu(RAi) is a set of relation between attributes of cases and
Nu(RCi) is a set of relations between cases.

5.2 Comparing Cases
The most common definition of similarity is a weighted sum of similarities of attributes
of cases [29]:

SIR =
∑N
i=1 oi × sim(f Ii , f

R
i )∑n

i=1 oi
,

where oi represents the weight of each attribute, sim is a similarity function, and I
and R stand for input and retrieved cases, respectively. In our case, four similarity
measures are defined for comparing cases:

1. Euclidean distance is used for comparing numeric attributes:
DIR =

√∑w
j=v+1 oj × (αIj

− αRj
)2

2. The following metric is used for attributes that are variables: VIR =
∑v

j=1 g(αIj
,αRj

)

v ,
where g is defined as:

g(αIj , αRj ) =
{

1 if αIj
= αRj

0 if αIj 6= αRj ,

3. In a similar way to [54], we define the following metric for comparing relations
between attributes: PIR = |RAI∩RAR|

|RAI∪RAR| . PIR is the number of relations between
attributes that the input and retrieved case have in common divided by the total
number of relations between attributes of the two cases.
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4. Similarity in terms of relations between cases is defined by TIR = |RCI∩RCR|
|RCI∪RCR| ,

where TIR is the number of relations between cases that the input and retrieved
case have in common divided by the the total number of relations between cases
of I and R.

In order to identify the closest strategy to the one employed by a learner, cumulative
similarity measures are used for each of the four types of similarity:

1. Numeric attributes - as this metric has a reversed meaning compared to the other
ones, i.e. a smaller number means a greater similarity, the following function is
used to bring it to the same meaning as the other three similarity measures, i.e. a
greater number means greater similarity.

F1 =
{ z∑z

i=1DIiRi
if
∑z
i=1DIiRi

6= 0
z if

∑z
i=1DIiRi

= 0,

2. Variables: F2 = (
∑z
i=1 VIiRi

)/z.

3. Relations between attributes: F3 = (
∑z
i=1 PIiRi)/z.

4. Relations between cases. F4 = (
∑z
i=1 TIiRi

)/z.

where z represents the minimum number of cases among the two compared strategies.
The strength of similarity between the current strategy and the various stored strategies
is defined as the maximum combined similarity of these four measures among the
various strategies compared.

5.3 Scenario-based Validation of the CBR component
To illustrate the operation of the CBR component and its role to support learner mod-
elling we use an example from ShapeBuilder, a task called “pond tiling”, which is
common in the English school curriculum and expects learners to produce a general
expression for finding out how many tiles are required for surrounding any rectangu-
lar pond [17]. The high level learning objective in the Domain Model is to acquire
the ability to perform structural reasoning [18]. In order to achieve this, sub-tasks can
be explored in ShapeBuilder, e.g. construct a pond of fixed dimensions, surround the
pond with tiles and determine how many are required; generalise the structure using
icon variables.

5.3.1 Representation of Users’ Strategies

The Task Model for pond tiling includes: (a) strategies identified in pilot studies [18],
e.g. thinking in terms of areas (see Fig. 4a) or in terms of width and height (see Fig-
ures 4b, c, d, e and f); (b) outcomes, e.g. model built, number of tiles for surrounding
a particular pond, and solution, i.e. the general expression (see Fig. 4 for the solutions
corresponding to each strategy; for the “area strategy” the solution with icon variables
is displayed in Fig. 2b); (c) landmarks, e.g. for the area strategy: creating a rectangle
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with height and width greater than the pond by 2 tiles; for the width and height strate-
gies: using rows/column of tiles; slips: several correct actions followed by an incorrect
one (e.g. correct surrounding of the pond, partially correct expression, but missing a 2
in the formula); (d) the context of each (sub-)task.

Figure 4: (a) “Area strategy”; (b) “H strategy”; (c) “I strategy”; (d) “Spiral strategy”;
(e) “+4 strategy”; (f) “−4 strategy”; (g) Steps and relations of “area strategy”; (h)
Steps and relations of “I strategy”.

The six strategies and their associated solutions (the general expressions for sur-
rounding any rectangular pond) are displayed in Figures 4(a–f). Two strategies are
presented in detail: the “area strategy” (S1) and the “I strategy” (S3). The attributes
of cases that are part of these two strategies are presented in Table 4 and Table 5, re-
spectively. The steps and the sets of relations between attributes and between cases are
displayed in Figure 4g and Figure 4h, respectively.

A particular order between cases is presented for the “I strategy” in Figure 4h. For
the same strategy, the surrounding of the pond could be done in several other different
orders; there are 4! = 24 such possibilities (the pond is always first).

There are two types of strategies depending on the degree of generality: specific
and general. Specific cases refer to surroundings that cannot be generalised and in-
clude value relations, but no dependency relations; the general cases refer to surround-
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Table 4: The set of attributes (Fi) for the cases in the “area strategy”.
Name Label C1 C2

Shape type αi1 Rectangle Rectangle
Width type αi2 c/v/n exp iv/iv exp
Height type αi3 c/v/n exp iv/iv exp
Width value αi4 5 7
Height value αi5 3 5
PartOfS1 αi6 1 1
...

...
...

...
PartOfS2 αi7 1 0
PartOfS6 αi8 1 0

Table 5: The set of attributes (Fi) for the cases in the “I strategy”.
Label C1 C2 C3 C4 C5

αi1 Rectangle Rectangle Rectangle Rectangle Rectangle
αi2 c/v/n exp iv /iv exp iv /iv exp c/v/n exp c/v/n exp
αi3 c/v/n exp c/v/n exp c/v/n exp iv /iv exp iv /iv exp
αi4 5 7 7 1 1
αi5 3 1 1 3 3
αi6 1 0 0 0 0
αi7 1 1 1 1 1
...

...
...

...
...

...
αi8 1 0 0 1 1

ings that can be generalised and are distinguished by the presence of the dependency
relations and by the fact that the dimension type of at least one of the dimensions of
the case is an icon variable or an expression using icon variable(s). The presence or
absence of the abovementioned aspects apply to all cases that form the composite case
with the exception of the first case representing the pond. The “area” and the “I strat-
egy” presented previously fall into the category of general strategies.

The strategies displayed in Figure 4 are correct symmetrical “elegant” solutions,
but trials with pupils have shown that not all of them use this type of approach [17, 18].
Some pupils surround the pond in a non–systematic manner and with variable degrees
of symmetry. Such examples are illustrated in Figure 5.

5.3.2 Comparing Cases

To illustrate the operation of similarity measures we use two ‘general’ non–symmetrical
examples of surrounding the pond, displayed in Figure 5 and two examples combining
‘specific’ and ‘general’ cases, displayed in Figure 6. The similarity measures are the
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ones presented in Section 5.2. The scenarios correspond to real-life situations encoun-
tered in trials with pupils.

Scenario 1. The example displayed in Figure 5a has 4 cases in common with two
strategies: the “I strategy” (C1, C3, C4, C5) and the “+4 strategy” (C1, C4, C5, C6).
When comparing it with the “I strategy” z = 5 (minimum between 6 and 5) and the
combined similarity is: 5√

1
+ 5

5 + 7/4
5 + 10/4

5 = 6.85. When comparing with the “+4”

strategy, z = 6 (minimum between 6 and 9) the combined similarity is: 6√
5

+ 5+2/3
6 +

6/4
6 + 10/4+1/3

6 = 4.35. Thus, in this case the learner will be guided towards the “I
strategy”.

Figure 5: Non-symmetrical strategies: (a) combination of ‘I’ and ‘+4’ strategies; (b)
combination of ‘spiral’ and ‘H’ strategies.

Scenario 2. The second example (Figure 5b), has 3 cases in common with two strate-
gies: the “spiral strategy” (C1, C3, C4) and the “H strategy” (C1, C2, C5). When com-
paring it with the “spiral strategy” as well as the “H strategy”, z = 5 (minimum be-
tween 5 and 5), and the combined similarity is: 5√

2
+ 4+2/3

5 + 8/4
5 + 10/4

5 = 5.37. In
this situation, when the learner’s construction is equally similar to two strategies, the
following options could be offered: (a) present the learner with the two options and let
him/her choose one of the two (an approach that appears more suitable for advanced
learners than novices); (b) automatically suggest one of the two in a systematic way,
e.g. present the one that occurs more/less often with other learners; (c) inform the
teacher about the learner’s trajectory and the frequency of strategies and let him/her
decide between the two.

Scenario 3. The surrounding of the pond in Figure 6a corresponds to the ‘-4’ strategy
and has two ‘general’ cases (C2 and C3) and two ‘specific’ ones (C3 and C4). When
compared to the ‘specific’ ‘-4’ strategy and to the ‘general’ ‘-4’ strategy, the results
are the same: 5 + 3+2/3

5 + 1+2/3
5 + 10/4

5 = 6.70. This is due to the symmetry of
the surrounding (2 general and 2 specific cases). However, when there is no such
symmetry, the results will vary when the surrounding is compared to the ‘specific’ and
to the ‘general’ strategies. The decision to compare the surrounding of the pond to one
of the two types of strategies is made depending on the users characteristics. Generally,
if the learner has parts of the surrounding built in a general way and there is no more
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information about the learner’s experience with similar tasks or his/her overall level of
generalisation ability, the comparison will be made to the ‘general’ strategies, as some
learners are able to generalise from the beginning, without going through a ‘specific’
phase. However, some learners may copy what their colleagues are doing without really
understanding and without being able to generalise their solution. Further activity will
reveal whether this is the case, e.g. a learner typically will stack as the colleague he/she
copied from is way more advanced in the task; they, however, cannot follow any more
as they try to follow up using ‘specific’ cases. If so, the comparison will be made
with the ‘specific’ strategies and the learners will be supported to achieve a correct
surrounding of the pond and a correct expression of the number of tiles surrounding
the pond before moving on to generalise.

Figure 6: Strategies combining specific and general cases: (a)‘-4’ strategy (C2 and C3

are general; C4 and C5 are specific); (b) combination of ‘+4’, ‘spiral’ and ‘I’ strategies
(C2 and C4 are general; C3, C5 and C6 are specific).

Scenario 4. The surrounding displayed in Figure 6b is a combination of three strate-
gies (with at least two corresponding cases): ‘+4’, ‘spiral’ and ‘I’ strategies; two cases
are general (C2 and C4) and three are specific (C3, C5 and C6). Table 6 displays the
similarity measures for all three strategies in the ‘specific’ and ‘general’ case.

Table 6: Comparisons of Figure 6c with the specific and general ‘+4’, ‘spiral’ and ‘I’
strategies.

Strategy type Strategy F1 F2 F3 F4 Total
Specific ‘+4’ 6√

12

4+4/3
6

1/3+1/2
6

12/4
6

3.26

‘spiral’ 5√
12

3+4/3
5

1/2
5

10/4+1/3
5

2.88

‘I’ 5√
12

3+4/3
5

1+1/3
5

10/4+1/3
5

3.04

General ‘+4’ 6√
12

4+1/3
6

3/4+1/3
6

12/4
6

3.30

‘spiral’ 5√
12

3+4/3
5

1/2+1/3
5

10/4+1/3
5

2.94

‘I’ 5√
12

3+4/3
5

3/4+1/3
5

10/4+1/3
5

2.99

As pointed out before, when there is no symmetry with respect to the ‘specific’
and ‘general’ cases used in surrounding the pond, the similarity measures are different
when compared to the ‘specific’ and ‘general’ strategies, as it can be observed in Table
6. Although the maximum similarity measure is obtained for the ‘+4’ strategy, it may
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be easier to guide the student to the ‘I’ strategy, as the ‘+4’ strategy is more complex,
especially if the learner has little experience with tasks of similar difficulty; another
reason to ‘favour’ other strategies over the ‘+4’ one is that learners often complete the
surrounding of the pond with ‘1 by 1’ tiles just because there are some spaces that need
to be completed.

6 The Multicriteria Decision Making Component
Multicriteria Decision Making (MDM) defines a class of problems where a decision
from a predefined set of alternatives needs to be reached by taking into account two
or more criteria. Each alternative is evaluated on the set of criteria and the outcomes
provide a means of comparison between the alternatives that will facilitate a selection
of one or some alternatives, or a ranking between them. MDM also includes classi-
fication of alternatives into groups and group ranking [66]. The various approaches
used in this context to solve decision making problems include statistical techniques,
multi-attribute utility analysis, the analytic hierarchy process, knowledge bases, and
mathematical models.

The Analytic Hierarchy Process (AHP) [52] is one of the most popular methods
in MDM [61, 58] that has been successfully applied in different domains, including
finance, engineering, sports, and others. It has also been applied in education, as men-
tioned in Section 2, but not in the area of learner modeling and feedback generation.
The next section includes a description of AHP formulation, followed by an example of
its application in the context of exploratory learning for mathematical generalisation.

6.1 The Analytic Hierarchy Process Formalism for Feedback Pri-
oritisation

The Analytic Hierarchy Process uses a hierarchical or network structure to represent a
decision problem and to establish priorities between alternatives depending on a set of
criteria involved in the decision process. It includes three main steps: (a) construction
of the hierarchy; (b) analysis of priorities and (c) verification of consistency.

The process (see Figure 7) starts with the definition of the hierarchy and is followed
by several sets of pairwise comparisons for the criteria involved and the possible alter-
natives. These result in weights for the criteria and priority vectors for the alternatives;
their consistency is verified and they are used to calculate the composite weights of
alternatives or final priorities; the consistency of the whole hierarchy is also verified.
If the consistency condition is not satisfied, revisions of the pairwise comparisons are
necessary for a trustworthy decision.

Hierarchy. The hierarchy has the general structure represented in Figure 8. The
highest level represents the goal; the second level includes the criteria based on which
the decision should be taken; the third level includes the possible alternatives which
will be prioritised with respect to the criteria. The first step includes a decomposition
of the decision problem into parts defined by all relevant attributes; these attributes are
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Figure 7: The Analytic Hierarchy Process.

arranged into hierarchical levels so as to reach the hierarchical structure presented in
Figure 8.

Figure 8: A hierarchy in the Analytic Hierarchy Process.

Priorities. The analysis of priorities includes pairwise comparisons used to compute
weights for the alternatives; the weights will establish an order between the alternatives.
This process involves two substeps: (a) decide the priorities between the criteria; (b)
decide the priorities between alternatives with respect to each criterion. The priorities
take the form of matrices (see Eq. (1)): one for the first substep, priorities amongst
criteria, and n for the second substep, priorities amongst alternatives (a matrix for each
criterion). For both types of matrices the values of the lower diagonal part of the matrix
are the inverse of the values of the upper diagonal part, i.e. cji = 1/cij , aji = 1/aij , as
the comparison result between two objects A and B is reversed when the order changes,
meaning between B and A.
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1 c12 ... c1n

1/c12 1 ... c2n
... ... ... ...

1/c1n 1/c2n ... 1




1 a12 ... a1m

1/a12 1 ... a2m

... ... ... ...
1/a1m 1/a2m ... 1

 (1)

In Eq. (1), each pair of criteria ci and cj has an associated value that specifies their
relative importance. The values of cij(1 ≤ i, j ≤ n) and aij(1 ≤ i, j ≤ m) are
determined using a scale from 1 to 9, where 1 means ‘equally important’ and 9 , means
‘extremely more important’. For example, cij = 1 means that the criteria ci and cj are
equally important, cij = 3 means that ci is more important than cj and cij = 9 means
that ci is extremely more important than cj . The vales and meaning for the inverse
pairs are: cji = 1: cj and ci are equally important, cji = 1/3: cj is less important than
ci and cji = 1/9: cj is extremely less important than ci.

The weight of each criterion is calculated using Eq. (2) and the criteria weight
vector is obtained: W = (w1, w2, . . . , wn).

wi =

(∏n
j=1 cij

)1/n

∑n
i=1

(∏n
j=1 cij

)1/n
(2)

For the alternatives, a priority vector is calculated for each matrix (corresponding
to a criterion) using the same equation, i.e Eq. (2). Thus priority vectors: A(Crj) =
(A1(Crj), A2(Crj), . . . , Am(Crj)), j = 1, n are obtained. The matrix A of Eq. (3)
results from combining the n priority vectors.

A =


A1(Cr1) A1(Cr2) · · · A1(Crn)
A2(Cr1) A2(Cr2) · · · A2(Crn)

...
...

. . .
...

Am(Cr1) Am(Cr2) · · · Am(Crn)

 (3)

By combining the criteria weights and the priority vectors the final alternatives pri-
orities vector P with respect to all criteria is obtained using Eq. (4). More specifically,
the priority for each alternative is calculated as shown in Eq. (5).

P = A ∗W (4)

pi = Ai(Cr1) ∗ w1 +Ai(Cr2) ∗ w2 + . . .+Ai(Crn) ∗ wn, i = 1,m (5)

Consistency. To verify the consistency of the n+1 pairwise comparisons matrices (n
alternatives matrices and 1 criteria matrix), an approximation of the maximum eigen-
value for each matrix, denoted as λmax (see Eq. 6) is used to calculate the consistency
index (CI). Eq. (7) shows how to calculate CI for the criteria matrix and the n alterna-
tives matrices.
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λmaxj
= (

m∑
i=1

ai1,

m∑
i=1

ai2, . . . ,

m∑
i=1

aim)∗

(A1(Crj), A2(Crj), . . . , Am(Crj))T , j = 1, n

(6)

For criteria: CI =
λmax − n
n− 1

For alternatives: CIj =
λmaxj −m
m− 1

, j = 1,m
(7)

CI and the Random Consistency Index (RCI) are used to calculate the consistency
ratio (CR) as in Eq. (8). The values of the RCI for 1 to 10 criteria are displayed in
Table 7. Values of the consistency ratio below 0.10 indicate consistency, while greater
values indicate the opposite. In the later case, revision of the pairwise comparisons is
necessary.

CR =
CI

RCI
(8)

Table 7: Values of RCI for n = 1, 10.
n 1 2 3 4 5 6 7 8 9 10
RCI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

The overall consistency of the hierarchy is a function of the consistency indexes of
all pairwise matrices, the RCI for the number of criteria and number of alternatives and
the weights of the criteria, as in Eq. (9).

CR =
CIcriteria + w1 ∗ CIaltCr1

+ w2 ∗ CIaltCr2
+ . . .+ wn ∗ CIaltCrn

RCIn + w1 ∗RCIm + w2 ∗RCIm + . . .+ wn ∗RCIm
(9)

Summarising, the AHP process involves three main steps: definition of the hier-
archy, analysis of pairwise comparisons and verification of consistency. These are
illustrated through an example in the following section.

6.2 Scenario-based Validation of the MDM component
One scenario is presented to illustrate the AHP process in the context of ShapeBuilder
and tasks of the same type as pond-tiling. The hierarchy of the AHP formalism is
illustrated in Figure 9: the goal is to obtain feedback priorities; the criteria is the type of
context: specific and general; the alternatives are feedback on the following aspects: (a)
correctness of construction (CC); (b) correctness of expression (CE); (c) construction-
expression correspondence (C-E); (d) symmetry of construction (Sym); (e) generality
of construction (CGen); (f) generality of expression (EGen); (g) use of icon variables
(IV).
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Figure 9: AHP hierarchy for prioritising alternative types of feedback.

The pairwise comparisons between criteria and between alternatives vary depend-
ing on learner’s characteristics: (a) task difficulty; (b) level of experience (stored for
each level of task difficulty) and (c) arithmetics knowledge level. To illustrate the appli-
cation of AHP for prioritising feedback we consider a situation when the task difficulty
is high, the level of experience of the learner with highly difficult tasks is low and
his/her arithmetics knowledge level is good.

The pairwise comparisons and weights of the criteria are displayed in Table 8. As
the learner is given a task of high difficulty only after having at least medium experience
with low and medium task difficulty, the specific context is only slightly more important
than the general one.

Table 8: Criteria pairwise comparisons and weights.
Criteria Specific General Weights
Specific 1 2 0.67
General 1/2 1 0.33
λmax = 2, CI = 0, CR = 0

For each of the two criteria, i.e. specific and general context, there is a matrix
of pairwise comparisons of the alternatives. The pairwise comparisons and the priority
vector when the context is specific is displayed in Table 9, while the ones for the general
context are displayed in Table 10. Both matrices are consistent.

Table 9: Alternatives pairwise comparisons and the priority vector with respect to spe-
cific context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 3 3 1 7 7 7 0.33
CE 1/3 1 1/2 1/2 3 3 7 0.13
C-E 1/3 2 1 1/2 5 5 7 0.19
Sym 1 2 2 1 2 3 5 0.21
CGen 1/7 1/3 1/5 1/2 1 1 1/2 0.04
EGen 1/7 1/3 1/5 1/3 1 1 1/3 0.04
IV 1/7 1/7 1/7 1/5 2 3 1 0.05
λmax = 7.52, CI = 0.09, CR = 0.07
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Table 10: Alternatives pairwise comparisons and the priority vector with respect to
general context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 1 1 1 2 2 1 0.16
CE 1 1 1/2 1/2 1/3 1/3 1/3 0.07
C-E 1 2 1 1 1/3 1/3 1/3 0.09
Sym 1 2 1 1 1/2 2 1/3 0.12
CGen 1/2 3 3 2 1 2 1/2 0.18
EGen 1/2 3 3 1/2 1/2 1 1/2 0.12
IV 1 3 3 3 2 2 1 0.26
λmax = 7.62, CI = 0.10, CR = 0.08

The final alternatives priorities are displayed in Table 11. The most important as-
pect to give feedback on is the correctness of construction (CC), followed by symme-
try (Sym), correspondence between construction and expression (C-E) and use of icon
variables (IV); the next aspects to give feedback on are: correctness of expression (CE),
construction generality (CGen) and expression generality (EGen).

Table 11: Feedback priorities.
Alternatives CC CE C-E Sym CGen EGen IV
Priorities 0.28 0.11 0.16 0.18 0.09 0.07 0.12

Overall CR = 0.03

Therefore, when the task difficulty is high, the learners’ experience with this type of
tasks is low and their arithmetics level is good, the most important aspect is the correct-
ness of construction and its symmetry; symmetry is quite important as a generalisation
of a difficult task is more challenging when the construction (and consequently the ex-
pression) is not symmetric; the correspondence between construction and expression is
used in the development of the expression and is early encouraged so as to develop the
expression in parallel to the construction; the use of icon variables is encouraged from
the beginning in order to facilitate generalisation at a later stage. Hence, the focus is
on the construction, guiding the learners to build it in a correct way, using symmetry
and icon variables; the generality is addressed later, when these aspects are taken care
of; also, the importance of the correspondence between construction and expression is
stressed as to facilitate the derivation of the expression.

7 Validating the CBR-AHP Synergy: an Integrative Sce-
nario

To illustrate the combination of the two intelligent methods, i.e. CBR and AHP, we use
the “pond tiling” task discussed above. We will analyse the situation of two learners,
Alan and Mike, who have built the same construction, but have different expressions;
also, their learner models hold different values on their characteristics.
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We will start with the common aspect between the two: the construction. This
is displayed in Figure 10; it is a combination of two strategies, ‘I’ and ‘spiral’, and
consists of two ‘general’ cases (C2 and C3) and two ‘specific’ ones (C4 and C5). This
is a symmetric situation and consequently, the comparison with the ‘specific’ and the
‘general’ strategies will give the same results. Moreover, because the surrounding has
two cases from one strategy and two cases from the other one, when compared with
these two strategies, the same result is obtained: 5√

8
+ 3+4/3

5 + 3/4+1/3
5 + 10/4

5 = 3.35.
In such cases, as mentioned previously, there are several options for handling such a
situation. A piece of information that may be important when deciding towards which
strategy to guide the learner is related to the order in which the surrounding is done
and the complexity of the strategies. In the current example, the learners start with a
case from the ‘spiral’ strategy, but move to the ‘I’ strategy for the next two cases; to
complete the surrounding, another case, which is typically encountered in the ‘spiral’
strategy, is used. The fact that 2 subsequent cases belong to the same strategy may be
a good reason to guide the learner towards that particular strategy; however, it does
not provide enough evidence on its own that learners’ thinking of generalisation is
coherent. Other actions of the learners and information stored in the learner models are
necessary to reach an informed decision.

Figure 10: Combination of ‘I’ and ‘spiral’ strategies (C2 and C3 are general; C4 and
C5 are specific).

The expressions built by Alan and Mike are displayed in Figure 11. Although
Alan’s construction has some generality (through the use of icon variables) the ex-
pression is still specific. Mike has some generality in the expression as well as the
construction, though the two do not match.

Figure 11: (a) Alan’s expression (b) Mike’s expression
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The difficulty of the “pond tiling” task is considered to be medium. On one hand,
Alan has low experience with tasks of medium difficulty and a low level of arithmetic
knowledge. On the other hand, Mike has high experience with medium difficulty tasks
and his level of arithmetic knowledge is good. Taking these aspects into consideration
and the context, i.e. ‘specific’ and ‘general’, the AHP is applied in order to find in
which order the feedback on the different aspects (the seven alternatives presented in
Section 6.2) should be provided.

For Alan, the pairwise comparisons and the weights for the criteria (the two types
of context) are displayed in Table 12. As his experience with medium difficulty tasks
is low, the ‘specific’ context criterion is more important than the ‘general’ context one.
The matrices for the alternatives are displayed in Table 13 and Table 14: the first for the
‘specific’ criterion and the second for the ‘general’ one. The final alternatives priorities
are displayed in Table 15.

Table 12: Alan: Criteria pairwise comparisons and weights.
Criteria Specific General Weights
Specific 1 3 0.75
General 1/3 1 0.25
λmax = 2.00, CI = 0, CR = 0

Table 13: Alan: Alternatives pairwise comparisons and the priority vector with respect
to specific context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 5 5 3 9 9 9 0.44
CE 1/5 1 1/2 3 5 5 9 0.17
C-E 1/5 2 1 3 5 5 9 0.21
Sym 1/3 1/3 1/3 1 1/3 3 1/7 0.04
CGen 1/9 1/5 1/5 3 1 1 1/2 0.05
EGen 1/9 1/5 1/5 1/3 1 1 1/5 0.03
IV 1/9 1/9 1/9 7 2 5 1 0.07
λmax = 8.62, CI = 0.27, CR = 0.20

Table 14: Alan: Alternatives pairwise comparisons and the priority vector with respect
to general context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 1 1 2 2 2 1 0.16
CE 1 1 1 2 1/5 1/7 1/5 0.06
C-E 1 1 1 2 1/5 1/7 1/5 0.06
Sym 1/2 1/2 1/2 1 1/3 1/3 1/7 0.05
CGen 1/2 5 5 3 1 2 1/2 0.20
EGen 1/2 7 7 3 1/2 1 1/2 0.18
IV 1 5 5 7 2 2 1 0.30
λmax = 7.98, CI = 0.16, CR = 0.12
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Table 15: Alan: Feedback priorities.
Alternatives CC CE C-E Sym CGen EGen IV
Priorities 0.37 0.14 0.17 0.04 0.08 0.07 0.12

Overall CR = 0.07

The two matrices of pairwise comparisons between alternatives are not consistent
according to the standard measurement of consistency, i.e. CR, although the overall
hierarchy is consistent (CR = 0.07). The revised alternatives matrices are displayed
in Table 16 and Table 17. The new final priorities are displayed in Table 18.

Table 16: Alan: Alternatives pairwise comparisons and the priority vector with respect
to specific context - revised.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 4 4 5 9 9 9 0.44
CE 1/4 1 1/2 3 5 5 7 0.17
C-E 1/4 2 1 5 5 5 7 0.22
Sym 1/5 1/3 1/5 1 1/2 2 1/5 0.04
CGen 1/9 1/5 1/5 2 1 1 1/2 0.04
EGen 1/9 1/5 1/5 1/2 1 1 1/3 0.03
IV 1/9 1/7 1/7 5 2 3 1 0.06
λmax = 7.81, CI = 0.14, CR = 0.10

Table 17: Alan: Alternatives pairwise comparisons and the priority vector with respect
to general context - revised.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 1 1 2 2 2 1 0.18
CE 1 1 1 2 1/3 1/3 1/3 0.09
C-E 1 1 1 2 1/3 1/3 1/3 0.09
Sym 1/2 1/2 1/2 1 1/2 1/2 1/3 0.07
CGen 1/2 3 3 2 1 2 1/2 0.18
EGen 1/2 3 3 2 1/2 1 1/2 0.15
IV 1 3 3 3 2 2 1 0.25
λmax = 7.55, CI = 0.09, CR = 0.07

Table 18: Alan: Feedback priorities - revised.
Alternatives CC CE C-E Sym CGen EGen IV
Priorities 0.37 0.15 0.19 0.05 0.08 0.06 0.11

Overall CR = 0.04

The final order of alternatives is the same in the revised version as the first (appar-
ently) inconsistent one, although there are small differences in the values. The revised
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matrices were obtained using Saaty’s suggested method of reconsidering the alterna-
tives for which the corresponding rows in the matrix [|aij − (pi/pj)|] have the largest
sums. Looking at the original and the new matrices, a change in numbers is observed,
but with the preservation of the transitivity between the alternatives. As the idea is to
prioritise between alternatives, transitivity is a logical condition and maybe the only
necessary indication of consistency, as the preservation of priorities order seems to
indicate.

Coming back to the educational meaning of these priorities, for Alan, the most
important aspect for feedback is the correctness of construction, followed by the cor-
respondence between construction and expression, and the correctness of expression.
Thus, as Alan’s arithmetic knowledge is low, his correct construction (already achieved,
although not symmetric) and its correspondence with the expression (partial correspon-
dence) lead Alan towards a correct expression. The following aspects to give feedback
on are: (a) the use of icon variables - thus, Alan will be encouraged to introduce the
icon variables in his expression and also to use the icon variable for the tiles corre-
sponding to cases C4 and C5; (b) the generality of the construction, which can be
achieved through using icon variables; (c) expression’s generality and (d) symmetry.
Thus, Alan will be guided to achieve a correct and general construction and expression
before introducing symmetry. After this has been achieved, the benefits of symmetry
will be presented and Alan will be guided to the ‘spiral’ or ‘I’ strategy through one of
the options presented in Section 5.3.2. Letting the learner choose is not a feasible op-
tion, as Alan has low experience with this type of tasks; if there would be an automatic
choice between the two, Alan would probably be guided towards the ‘I’ strategy; alter-
natively, the teacher could be informed about Alan’s activity and she/he could choose
one of the two.

The pairwise comparisons and weights of the criteria for Mike are displayed in
Table 19. As Mike’s level of experience with medium difficulty tasks is high, the ‘gen-
eral’ context criterion is significantly more important than the ‘specific’ context one.
The alternatives matrices are displayed in Table 20 for the ‘specific’ context criterion
and Table 21 for the ‘general’ context criterion. The final alternatives priorities for
Mike are displayed in Table 22. All matrices are consistent.

Table 19: Mike: Criteria pairwise comparisons and weights.
Criteria Specific General Weights
Specific 1 1/5 0.17
General 5 1 0.83
λmax = 2.00, CI = 0, CR = 0

For Mike, the most important aspect for feedback is the use of icon variables, aim-
ing to introduce generality early in the process of solving the task, as Mike has high
experience with similar tasks (from difficulty point of view). Thus, Mike will be en-
couraged to use icon variables for the tiles corresponding to cases C4 and C5. The
second important aspect, construction generality, is done using the icon variables and
only after that feedback should address the correctness of construction. Thus, in con-
trast to what happened with Alan, Mike is first guided towards ‘thinking in a general
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Table 20: Mike: Alternatives pairwise comparisons and the priority vector with respect
to specific context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 3 3 2 5 5 5 0.35
CE 1/3 1 1/2 1 3 3 5 0.15
C-E 1/3 2 1 1/2 3 3 5 0.17
Sym 1/2 1 1/2 1 3 3 5 0.16
CGen 1/5 1/3 1/3 1/3 1 1 1/3 0.05
EGen 1/5 1/3 1/3 1/3 1 1 1/7 0.04
IV 1/5 1/5 1/5 1/5 3 7 1 0.07
λmax = 7.51, CI = 0.09, CR = 0.06

Table 21: Mike: Alternatives pairwise comparisons and the priority vector with respect
to general context.

Alternatives CC CE C-E Sym CGen EGen IV Priority Vector
CC 1 1 1 2 1/2 1 1 0.13
CE 1 1 1/2 1/2 1/3 1/3 1/3 0.07
C-E 1 2 1 1/2 1/3 1/3 1/3 0.08
Sym 1/2 2 2 1 1 3 1/3 0.14
CGen 2 3 3 1 1 2 1 0.22
EGen 1 3 3 1/3 1/2 1 1/3 0.12
IV 1 3 3 3 1 3 1 0.24
λmax = 7.59, CI = 0.10, CR = 0.07

Table 22: Mike: Feedback priorities.
Alternatives CC CE C-E Sym CGen EGen IV
Priorities 0.17 0.08 0.10 0.15 0.19 0.11 0.21

Overall CR = 0.03

way’ and then ‘fixing’ the construction/expression. Symmetry is then considered as
the next important aspect of a construction because it facilitates generalisation and
the construction of the corresponding general expression, which follows afterwards.
At this point the eventual mismatch between the construction and the expression are
addressed and, through this, Mike is guided towards a correct expression. Although
Mike’s expression did not correspond to his construction, this aspect is not addressed
immediately; also, the expression shows a way of solving the task that is symmetric,
which will probably be reflected in the construction later on.

Table 23 summarises this integrative scenario by presenting the various pieces of
information that are combined, including the input from the Task LTM, which stores
inferences of the CBR component, and the Domain LTM, and the output from the
Feedback Priorities component. Thus, a similar diagnosis of the learners’ models ob-
tained by the CBR component would lead to different outputs of the AHP component
depending on extra information available about the learners.
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Table 23: Feedback priorities depending on the learners’ model data.

Alan Mike
Task task pond-tiling pond-tiling
LTM difficulty medium medium

strategies ‘I’ ‘I’
‘spiral’ ‘spiral’

expression

Domain experience low high
LTM arithmetics level low good
Feedback priorities CC, C-E, CE, IV, IV, CGen, CC, Sym

CGen, EGen, Sym EGen, C-E, CE

8 Discussion and Conclusions
In this paper we presented a synergistic approach for learner modelling and feedback
aiming to solve some challenges encountered in exploratory learning environments.
This work addresses the necessity of feedback in ELEs during rather than at the end
of a task and of feedback prioritisation as exploratory activities often require feedback
on several aspects. The learner modelling framework we presented aims to support the
provision of feedback tailored to the learners through a detailed and frequently updated
learner model. We illustrated this approach in ShapeBuilder, an exploratory learning
environment for mathematical generalisation.

The core of our approach is a hybrid model that combines the advantages of rep-
resentation flexibility from case-based reasoning, and prioritisation from multicriteria
decision making, when several aspects need to be accounted for. A representation of
the tasks is stored in a case-base forming a Task Model. Models produced by the
learners are compared against these cases to identify misconceptions and underlying
strategies that require support. This information is further used to prioritise the aspects
that require feedback depending on the learners’ long-term characteristics.

One of the challenges encountered when building the task knowledge base was the
representation of the task in a way that facilitates diagnosis and monitoring of what the
learners are building in the system. The current case-based representation was chosen
for its flexibility, despite the fact that it does not ‘fit’ into the standard representation
used in CBR, where a case usually represents a problem with its definition and solu-
tion. In our approach, we use simple and composite cases, i.e. strategies (build up
from simple cases); the latter representing potential problem solutions. This allows the
diagnosis of the learners constructions while they are building them.

The cooperative inquiry design methodology adopted in this work involved sev-
eral iterations and refinements of the software, consequently taking longer than other
approaches to software development. However, the participatory and iterative method-
ology captured the way children interact with the system and thus, informed the devel-
opment of the learner modelling and feedback components.
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Another practical issue related to the CBR approach is scalability. The scenarios
presented covered some of the most complex situations encountered in the trials with
pupils, suggesting therefore, that this approach will scale-up when the complexity of
the learners’ constructions increases.

Another considerable challenge was to frame the feedback priorities problem in
terms of the AHP. The examples provided in this paper were limited to feedback on
model and expression construction. However, there are other aspects to give feedback
on [42], like setting goals, organising the working environment, supporting reflection
and collaboration, in which case the hierarchy becomes more complex. These aspects
will be addressed in future work together with an evaluation of this approach in a real
classroom setting.
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