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Abstract. Exploratory learning has been proved to be beneficial for learning 

when guidance and support is provided. This is a challenging issue as balance 

between freedom and control is a strong requirement in this context. In this 

paper the challenges involved are discussed together with the way they affect 

the process of learner modelling. We discuss previous attempts to model the 

learner in exploratory learning, and how they fall short, and propose as an 

alternative a learner modelling framework for exploratory learning 

environments that adopts the constructionist view of learning. We investigate 

the application of this framework in the domain of mathematical generalisation 

and discuss how the model can potentially support feedback generation. An 

example is discussed in detail, and an approach based on case-based reasoning 

and soft computing is presented to represent and process short-term and long-

term learner behaviour and knowledge in the learner model. 
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mathematical generalisation, case-based reasoning, soft computing. 

1. Introduction 

Constructivism [16] sees learning as an active, constructive process in which 

knowledge is built and structured gradually. Exploratory/discovery learning supports 

this view of learning and has been argued to be particularly beneficial [2] in terms of 

providing opportunities for acquiring deep conceptual and structural knowledge. 

However pure discovery learning without any guidance and support is hardly 

beneficial [6]. The main challenge with this approach is to balance freedom with 

control: learners should be given enough freedom so that they can actively engage in 

constructing models and they should be offered enough guidance in order to assure 

that their constructions lead to useful knowledge [10].  

In contrast to previous attempts [1], [14], [15], here we advocate an approach that 

extends user modelling in Exploratory Learning Environments (ELEs) by reflecting 

and supporting the constructionist learning process. Since the focus is on the process, 

interaction analysis [11] plays an essential part in learner modelling. Typically it starts 

with filtering raw data in order to extract some indicators related to the quality of the 

learning process. These indicators can be used for several purposes; in our case, the 

main purpose is the regulation of the learning process through feedback, while a 

secondary purpose is to inform teachers about students’ learning process and 

progression.  

Our approach will be integrated into an ELE for mathematical generalisation, 

called ShapeBuilder [4] which is under development in the context of the MiGen 



  

project
1
. This ELE aims to facilitate structured algebra thinking in children by 

allowing them to create and identify patterns and articulate structures in order to 

recognise, express and justify generality, a concepts that lies at the centre of 

mathematical thinking. 

In this paper, we present our framework for learner modelling. This follows 

principles of constructivism and supports provision of feedback in order to guide the 

learner towards useful and sound knowledge construction. The following section 

gives an overview of the research challenges involved and of previous research in 

ELEs. Section 3 presents the proposed framework. Section 4 illustrates the approach 

through one example and discusses knowledge representation using case-based 

reasoning. Section 5 presents the expected contributions of our research and 

concludes the paper. 

2. Research Challenges and Related Work 

Besides the clear and well-acknowledged challenge of balancing freedom with 

guidance, as mentioned in the previous section, there are other issues that make the 

process of learner modelling in ELEs demanding:  

(a) What to model? Usually learner models relate to knowledge or skills. In the 

context of exploratory learning, the knowledge results from constructionist 

processes and there is a clearer indication of this knowledge at the end of these 

processes. Nevertheless, support is required both during knowledge construction 

and at the end of certain processing stages. Thus, a key question is what to model 

so that support can be provided during and at the end of knowledge construction. 

(b) Value of correct vs. incorrect actions. In most e-Learning systems, feedback is 

related to correctness or incorrectness of answers/actions, while in ELEs learner’s 

explorations are difficult to categorise into correct or incorrect. Moreover, even if 

such a classification would be possible, incorrect actions may be more valuable 

for learning than correct ones. Actually, one of the advantages of ELEs is that 

learners are given the opportunity to realise their own mistakes and learn from 

them; thus, rather then pointing out possible mistakes, the system should provide 

learners with feedback that would encourage reflection on their actions and help 

them realise that their knowledge construction is not entirely correct. 

(c) Relation between abstract knowledge and forms of (re)presentation in the system. 

ELEs have different ways of (re)presenting and exploring models that should 

gradually help the learner build abstract knowledge. Each part of the model and 

each type of exploration (e.g. changing parameters, creating new models, testing 

models etc.) contributes to this process. Identification of relevant abstract 

knowledge is needed as well as its representation in the learner model. 

(d) Identification of underlying strategies from actions or sequences of actions. 

Sometimes is neither realistic nor feasible to include all possible outcomes 

(correct or incorrect) and ways to achieve them when modelling an extensive 

knowledge domain. Thus, a different approach to what is included in the 

knowledge structure is required; rather than storing complete information about a 
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task or expert knowledge, key information with informative educational value 

could be stored, such as strategies for approaching the (sub-) task, and landmarks 

indicating a particular strategy or (lack of) knowledge about a particular aspect. 

The challenge is how to find this information and how to represent it in the 

knowledge structure. 

Given the abovementioned challenges, a classical approach to learner modelling 

based on concepts would not fit the purposes of ELEs. The classic approach involves 

a particular scenario: learners are required to study materials about a concept and then 

their knowledge level is assessed through testing. Previous attempts in this area 

include: (a) the use of heuristics to guide the learning process in a physics domain 

[15]; (b) Bayesian networks in a mathematical functions domain [1]; (c) neuro-fuzzy 

systems for student diagnosis in a physics domain [14]. The idea of intelligent support 

was tackled in [15] using induction and deduction, whilst templates were used to 

generate feedback; no learner model was used. The second approach addresses 

“effective exploration” [1], but uses “standard” student modelling in the sense that 

essential cases for the problems to be explored are used as the equivalent of concepts 

in classical overlay models. Two of the challenges previously mentioned, i.e. what to 

model and the difficulty of determining the (in-) correctness of an action, were also 

addressed. The third approach combines fuzzy knowledge representation of expertise 

in teaching physics with training from practical examples when knowledge is not 

accurate or well-defined. It focuses on student diagnosis and feedback is not 

addressed.  

3. A Framework for Learner Modelling in ELE 

ELEs involve knowledge discovery by means of constructive activities and the 

emphasis is on the process rather that the knowledge itself and thus, the learner 

modelling process should reflect this way of learning. The nature of this process 

places the focus on the interactions of the learner with the system rather than on their 

answers to tests. Thus, analysing interactions during knowledge construction and 

extracting relevant information is an essential part of the learner modelling process 

that together with knowledge about student's learning processes inferred from their 

models and their learning progression can play an important role in generating 

feedback and support. 

In our approach, the ELE includes two components (see Fig. 1): a domain and a 

task model. The domain model includes high level learning outcomes related to the 

domain and considers that each learning outcome can be achieved by exploring 

several tasks. The task model includes different types of information: (a) strategies of 

approaching the task which could be correct, incorrect or partially correct; (b) 

outcomes of the exploratory process and solutions to specific questions associated 

with each (sub-) task; (c) landmarks, i.e. relevant aspects or critical events occurring 

during the exploratory process; (d) context, i.e. reference to this particular task. 

The main issues addressed in the proposed framework are the following: (a) What 

interactions are relevant and how can they be extracted from the flow of raw data and 

transformed into indicators? (b) What should be stored in the learner model in order 

to represent the evolution of the learner’s constructionist models and their 



  

corresponding cognitive processes? (c) How should the learner model be updated in 

order to reflect both the current knowledge and the evolution of knowledge? (d) Using 

the learner model, how can personalised feedback be provided to support the 

constructionist process and inform the teacher? 

Below we present how the proposed framework can address these challenges. 

(a) The learner’s interaction model. A representation of the relevant interactions of 

the learner with the system is required and several questions need to be addressed, 

e.g. identifying the relevant actions or sequences of actions. For example, to 

answer this question in the context of MiGen, teachers’ expertise will be used and 

observations of children working with the ShapeBuilder in the context of small-

scale exploratory studies. These are expected to provide an understanding of 

relevant actions that lead to both correct and incorrect solutions and would be 

represented as cases or constraints.  

(b) Representing the evolution of the learning process. The proposed learner 

modelling process presented in Fig. 1 addresses this issue. To this end, the 

structure of the learner model and the updating process follow the model of human 

memory often used in user modelling (e.g. [7]), and includes two components: a 

short-term model (STM) and a long-term model (LTM). The STM includes recent 

actions of the learner. The LTM contains information about the domain and the 

task and thus has two parts: the Task LTM that has the same structure as the task 

model, and the Domain LTM, which is an overlay model of the domain and 

maintains the knowledge of the learning outcomes associated with the learning 

process as inferred from the learner’s constructions.  
 

 

Fig. 1. Learner modelling process. 

(c) Updating the model. The learner model update is illustrated in Fig. 1. During the 

(sub-) task, the actions of the learner are stored in the STM and pre-processed. 

This process aims to transform the raw data into intermediate level data that will 

be used to identify (match) the relevant strategies, landmarks, outcomes and 

solutions for a learner in the current task or subtask. Knowledge of the domain and 

teachers’ expertise together with findings from pilot studies will be used to derive 

these aspects for every (sub-) task and define a ‘light-weight’ model for 

mathematical generalisation. For pre-processing, a technique similar to episodes 

identification and association [8] can be used and comparisons will be made using 

fuzzy similarity measures. After matching, the Task LTM is updated; then, the 

degree of meeting the learning outcome that was explored through the (sub-) task 

is updated in the Domain LTM. Thus, the modelling process reflects the 

constructionist approach of incremental knowledge acquisition. As the three 



  

components of the learner model have different structure and functionality, there 

are different updating mechanisms and timeframes for each of the three parts of 

the model. The STM will be updated frequently with the interactions of the 

learner; the Task LTM will be updated less frequently based on the processed data 

from the STM and the data from the Task Model; the Domain LTM will be 

updated even less frequently based on information from the Task LTM. 

(d) Usage of the model for personalized feedback. As illustrated in Fig. 1, the 

feedback is generated based on Task LTM, Task Model and Domain LTM. The 

learner modelling process supports two types of feedback: during the exploration 

process and at the end of certain processing stages. The first one aims to guide the 

learner in gradually constructing the knowledge, while the second one is more 

related to outcomes of the exploration and specific solutions. 

Our framework will be implemented and validated in the context of MiGen 

project, through trials with pupils and testing in classrooms.  

4. An Illustrative Example: the Pond Tiling Task in ShapeBuilder 

To illustrate our approach we use an example from the mathematical generalisation 

domain, and a task called ‘pond tiling’, which is common in the English school 

curriculum and expects learners to produce a general expression for finding out how 

many tiles are required for surrounding any rectangular pond. The high level learning 

outcome in the Domain Model is the students’ ability to perform structural reasoning. 

In order to achieve this, subtasks can be explored, e.g. construct a pond of fixed 

dimensions, surround it with tiles and determine how many are required; generalise 

the structure using variables. This task is performed in ShapeBuilder [4], which 

allows the construction of different shapes, e.g. rectangles, L-shapes, T-shapes, and 

supports numeric, iconic and symbolic representations. Numeric representations 

include numbers (constants or variables) and expressions with numbers; iconic 

representations correspond to icon variables; symbolic representations are names or 

symbols given by users to variables or expressions. An icon variable has the value of 

a dimension of a shape (e.g. width, height) and can be obtained by double-clicking on 

the corresponding edge of the shape. It is represented as an icon of the shape with the 

corresponding edge highlighted. Constants, variables and numeric expressions lead to 

specific constructions/models, while icon variables and expressions using them lead 

to general constructions. Through the use of icon variables, ShapeBuilder encourages 

structured algebra thinking, connecting the visual with the abstract (algebraic) 

representation, as “each expression of generality expresses a way of seeing” [9]. 

An overview of the Task Model for the pond tiling task is presented in Fig. 2. It 

includes: (a) strategies, e.g. thinking in terms of width and height, thinking in terms of 

areas; (b) landmarks, e.g. creating a rectangle that has the height and width of the 

pond incremented by two as an indication of the ‘areas strategy’; (c) outcomes (e.g. 

model built, numerical answer for a particular pond) and solution, i.e. a general 

algebraic expression (e.g. for the ‘areas  strategy’: (width+2)* (height+2) – width * 

height); (d) context, i.e. reference to the task. 

In relation to the first challenge, i.e. the identification of relevant interactions from 

the flow of raw data and their transformation into indicators, we have explored 



  

relevant interactions during the pond tiling task (captured through small-scale 

exploratory studies), and worked on how to represent them in the Task Model. Case-

base reasoning was chosen as an appropriate approach as it offers flexibility in the 

representation of information and has been proved to be successfully combined with 

other approaches for retrieval of relevant cases that handle imprecision, e.g. neural 

networks [12], fuzzy quantifiers [17]. 
 

 

Fig. 2. Partial task model (slots connected by solid lines correspond to the example in the text). 

Our case base includes two types of cases: simple and composite. Below, we 

present an example for each type in relation to the models that the learners construct, 

i.e. the pond and the way to surround it. The cases are also distinguished on a specific 

vs. general dimension, as the generality is the goal, but it is rarely achieved without a 

start from the specific. 

Table 1 presents an example for a simple case as attribute-value pairs representing 

a rectangle; the structure applies to all types of shapes. In the category column, the 

various types of information included in the case are presented: 

(a) The first category of information is related to the shape; for the pond tiling task, 

the only type of shape used is rectangle.  

Table 1.  Simple case presented as attribute-value pairs.   

Category Attributes Possible values 

Shape shape type rectangle 

width type 

constant(c)/variable(v)/icon 

variable(iv)/numeric expressions (n_exp)/ 

expression using icon variable(s) (iv_exp) 

width value numeric value 

height type c/v/iv/n_exp/iv_exp 

Dimensions of shape 

height value numeric value 

Dependency relation  dependent on reference to case (e.g. w(ci) ) 

Value relation relation expression (e.g. w=w(ci)) 

subsequent to reference to case (e.g. cj) Time relations 
followed by reference to case (e.g. ck) 

part-of strategy 1 0 (if it is not part-of) /1 (if it is) 

part-of strategy 2 0/1 Part-of relation 

part-of strategy n 0/1 
 

(b) Each shape has one ore more dimensions; for a rectangular shape the dimensions 

are width and height; for other shapes, e.g. T-shape, there are three dimensions: 

width, height and thickness. Each dimension has a type and a value. The type 

refers to the way that dimension of the shape is constructed and can have four 

values: constant, variable, icon variable, numeric expression or expression using 

icon variable(s). Values of dimensions are numerical. 



  

(c) Dependency relations can be defined between the current case and another case(s). 

These relations are present when at least one of the dimensions of the shape is of 

icon variable or expression using icon variable(s) type. The attribute value is a 

reference to the specific case and to the dimension(s) of the case that the current 

case depends on. A case can include 0, 1 or many dependency relations. 

(d) Value relations can be related to or be independent of dependency relations; their 

value is an expression that defines the relation. For example, the expression 

w=w(ci) means that the width of the current case is equal to the width of case ci. A 

case can include none, one or more value relations. 

(e) Time relations are important for the composite cases; they provide a reference to 

the previous and the following case; the current case is subsequent to and followed 

by the cases referred. A case can include none or one of each of the two mentioned 

types of time relations. These relations are useful in organizing the cases, e.g. a 

string of cases ordered in time could be obtained from them that would define the 

current context or a particular strategy.   

(f) Part-of relations refer to the participation of a simple case to a strategy 

(represented as a composite case). It takes binary values (1 if the case is part of a 

specific strategy; 0 if not). The same case could be part of more than one strategy. 

The composite cases represent strategies and consist of instances of simple cases. 

Strategies were derived from small-scale exploratory studies of pupils using the 

ShapeBuilder and some examples are illustrated in Fig. 3a. The “2” flag in the 

strategy shown in the bottom right of Fig. 3a indicates that two tiles are overlapping. 

In the first strategy (top, left), named the area strategy, two steps are involved: 

constructing the pond and then constructing a rectangle that overlaps the pond and has 

an extra row/column on each side. The second strategy (see Fig. 3b), named the spiral 

strategy, includes five steps: constructing the pond and then creating four bars 

(arranged horizontally or vertically depending on the case), each of a length that is 

equal to the value of the corresponding dimension of the pond plus one.  
 

 
(a) (b) 

Fig. 3. (a) Strategies for the pond tiling task; (b) Simple cases of the spiral strategy 

Depending on the degree of generality, there are two types of composite cases: 

specific and general. Specific cases refer to surroundings that cannot be generalised 

and include value relations, but no dependency relations; the general cases refer to 

surroundings that can be generalised and are distinguished by the presence of the 

dependency relations and by the fact that the dimension type of at least one of the 

dimensions of the case is an icon variable or an expression using icon variable(s). The 

presence or absence of the abovementioned aspects apply to all simple cases that form 

the composite case with the exception of the simple case representing the pond. An 

illustration of each type is provided in Tables 2 and 3 for two strategies: the area and 



  

spiral strategy respectively. In Table 2, the specific case for the area strategy (strategy 

1) does not include a dependency relation, while the general case includes one; the 

general part also has both dimensions as expression using icon variable(s) type. Case 

1, i.e. the pond, is part of both strategies (as well as the other possible strategies), 

while Case 2 (the rectangle over pond) is only part of the area strategy.  

Table 2.  Area strategy: specific and general composite case.  

 Case1 (c1: pond) Case2 (c2: rectangle over pond) 

Attributes Values Values (specific) Values (general) 

shape type rectangle rectangle rectangle 

width type c/v c/v/n_exp iv_exp 

width value 5 7 7 

height type c/v c/v/n_exp iv_exp 

height value 3 5 5 

dependent on   w(c1); h(c1) 

relation1  w=w(c1)+2 w=w(c1)+2 
relation2  h=h(c1)+2 h=h(c1)+2 

Subsequent to  c1 c1 

Followed by c2 c3 c3 

part-of strategy 1 1 1 1 

part-of strategy 2 1 0 0 

part-of strategy n 1 0 0 
  

Table 3 partially presents a specific and a general composite case for the spiral 

strategy (strategy 2). Case 1 is the pond, Case 2 is the bar of tiles for the width of the 

pond and Case 3 is the bar of tiles for the height of the pond. The complete strategy 

includes two more simple cases: Case 4 and Case 5 that would have the same entries 

as Case 2 and Case 3, respectively, with the exception of the time relation attribute; 

the cases for each rectangle in strategy 2 are displayed in Fig. 3b.  

Table 3.  Spiral strategy: partial specific and general composite case.  

 

Case1 

(c1: pond) 

Case2  

(c2: width tiling) 

Case3  

(c3: height tiling) 

Attributes Values  
Values 

(specific) 

Values 

(general) 

Values 

(specific) 

Values 

(general) 

shape type rectangle rectangle rectangle rectangle rectangle 

width type c/v c/v/n_exp iv_exp c/v/n_exp iv_exp 

width value 5 6 6 1 1 

height type c/v c/v/n_exp iv_exp c/v/n_exp iv_exp 

height value 3 1 1 4 4 

dependent on   w(c1)  h(c1) 

value relation1  w=w(c1)+1 w=w(c1)+1 h=h(c1)+1 h=h(c1)+1 

subsequent to  c1 c1 c2 c2 

Followed by c2 c3 c3 c4 c4 

part-of strategy 1 1 0 0 0 0 

part-of strategy 2 1 1 1 1 1 

part-of strategy n 1 0 0 0 0 
 

The order of the simple cases (denoting a time relation) within the spiral strategy 

can vary depending on the starting point of the surrounding (the corner of the pond). 



  

For example, in Fig. 3b we illustrated the surrounding starting from the up-right 

corner. Other possibilities correspond to the other three corners and the corresponding 

order is shifted by one case each time as we move anticlockwise; for example if the 

tiling starts from the bottom-left corner the order would be Case 1, Case 4, Case 5, 

Case 2 and Case 3. The same strategy could occur with the clockwise surrounding. 

In relation to the second and the third challenges, i.e. how to represent the 

evolution of the learning process and how to update the model, the following process 

is taking place. As the learner constructs his/her model, raw data are stored in the 

STM. They are pre-processed and the transformed data are matched to the cases from 

the Task Model; any identified strategies (e.g. area strategy) together with landmarks 

(e.g. rectangle over pond), outcomes (e.g. the specific/ general construction) and 

context (pond tiling task) are stored or updated in the Task LTM. Finally, the degree 

of meeting the learning outcome that was explored through the (sub-) task is updated 

in the Domain LTM. For example, at the end of the “generalise the structure with 

variables” subtask, the knowledge associated with variables manipulation, which is 

considered an important step in the process of developing mathematical reasoning and 

generalisation ability, is updated in the Domain LTM. Thus, the evolution of the 

learning process is reflected in the learner model. Nevertheless, depending on the 

context of the (sub-) task, some attributes are more relevant than others in retrieving 

cases from the case base. For example, in the pond tiling task, when the learner is 

constructing a specific (as opposed to general) tiling of the pond, the value relation 

attribute is more relevant, while when dealing with a general tiling, the dependency 

relation attribute is more important. To address this issue we intend to use a combined 

approach of case-based reasoning and neural networks (NN) for the matching process. 

Local feature weighting [12] will be used; the neural network is trained to learn the 

local feature weights as opposed to global weights where a single weight vector is 

used across the whole domain [13]. Thus, the variation in importance of the different 

attributes of a case depending on the context is taken into consideration. This 

approach is more robust due to the generalisation capacities of the NN that can 

produce weights even if there is no exact match to the cases. 

In relation to the fourth research challenge, i.e. how to provide personalized 

feedback, in the pond tiling task feedback could be provided in relation to different 

aspects. For example, if the learner has surrounded the pond following a strategy that 

does not generalise well, the feedback can suggest resizing the pond, which would 

result in “messing up” [5] the model, and encourage the learner to reflect on what is 

missing in order to make the solution general. When feedback needs to be provided in 

relation to more than one aspects, such as in the case of a learner who did not include 

the corners of the pond in the model (see Fig. 3a, bottom row, middle) and at the same 

time her construction is specific, two aspects should be addressed: (a) the rules of 

pond tiling; (b) the fact that the solution is not general, which could be handled as 

suggested in the previous paragraph. In this situation a decision is required about the 

order of feedback provision. To this end, an approach based on multicriteria decision 

making [3] will be used. In the above example, the aim is to achieve the learning goal, 

i.e. structural reasoning, the criteria are the fact that the four corners are missing 

(stored as a landmark) and that the solution is specific (as opposed to general) 

(identified from the strategy) and the alternatives are the two aspects that require 

feedback. The outcome will be an ordering of alternatives in terms of their priorities.  



  

5. Concluding remarks and contribution 

In exploratory learning learner’s knowledge is built gradually as a result of active 

participation in the learning process. In this paper, we proposed a novel framework 

for user modelling that reflects the constructionist learning approach, and proposed a 

mechanism for knowledge representing and updating the user model. Our approach 

employs a Task Model and combines case-based reasoning with other intelligent 

technologies in order to improve retrieval of relevant cases and to establish priorities 

in feedback provision when multiple feedbacks are required. Lastly, we briefly 

described how the framework can be used in an ELE for mathematical generalisation.  
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